Part Number Hot Search : 
CAT24 PHP36N06 045CT LC100 AOZ1020 TN1177 RT9701CB AN110
Product Description
Full Text Search
 

To Download M38503E4SS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DESCRIPTION
The 3850 group (spec. H) is the 8-bit microcomputer based on the 740 family core technology. The 3850 group (spec. H) is designed for the household products and office automation equipment and includes serial I/O functions, 8-bit timer, and A-D converter.
FEATURES
q Basic machine-language instructions ...................................... 71 q Minimum instruction execution time .................................. 0.5 s (at 8 MHz oscillation frequency) q Memory size ROM ................................................................... 8K to 32K bytes RAM ................................................................. 512 to 1024 bytes q Programmable input/output ports ............................................ 34 q Interrupts ................................................. 15 sources, 14 vectors q Timers ............................................................................. 8-bit 4 q Serial I/O1 .................... 8-bit 1(UART or Clock-synchronized) q Serial I/O2 ................................... 8-bit 1(Clock-synchronized) q PWM ............................................................................... 8-bit 1 q A-D converter ............................................... 10-bit 5 channels q Watchdog timer ............................................................ 16-bit 1 q Clock generating circuit ..................................... Built-in 2 circuits (connect to external ceramic resonator or quartz-crystal oscillator)
qPower source voltage In high-speed mode .................................................. 4.0 to 5.5 V (at 8 MHz oscillation frequency) In middle-speed mode ............................................... 2.7 to 5.5 V (at 8 MHz oscillation frequency) In low-speed mode .................................................... 2.7 to 5.5 V (at 32 kHz oscillation frequency) qPower dissipation In high-speed mode ..........................................................34 mW (at 8 MHz oscillation frequency, at 5 V power source voltage) In low-speed mode ............................................................ 60 W (at 32 kHz oscillation frequency, at 3 V power source voltage) qOperating temperature range .................................... -20 to 85C
APPLICATION
Office automation equipment, FA equipment, Household products, Consumer electronics, etc.
PIN CONFIGURATION (TOP VIEW)
VCC VREF AVSS P44/INT3/PWM P43/INT2/SCMP2 P42/INT1 P41/INT0 P40/CNTR1 P27/CNTR0/SRDY1 P26/SCLK P25/TxD P24/RxD P23 P22 CNVSS VPP P21/XCIN P20/XCOUT RESET XIN XOUT VSS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
P30/AN0 P31/AN1 P32/AN2 P33/AN3 P34/AN4 P00/SIN2 P01/SOUT2 P02/SCLK2 P03/SRDY2 P04 P05 P06 P07 P10/(LED0) P11/(LED1) P12/(LED2) P13/(LED3) P14/(LED4) P15/(LED5) P16/(LED6) P17/(LED7)
Package type : FP ........................... 42P2R-A/E (42-pin plastic-molded SSOP) Package type : SP ........................... 42P4B (42-pin plastic-molded SDIP)
Fig. 1 M38503MXH-XXXFP/SP pin configuration
M38503MXH-XXXFP/SP
: Flash memory version
2
Reset input VSS VCC RESET
18 15 1 21
FUNCTIONAL BLOCK DIAGRAM
Main-clock input XIN CNVSS
Main-clock output XOUT
FUNCTIONAL BLOCK
19
20
Fig. 2 Functional block diagram
CPU
Sub-clock Sub-clock input output XCIN XCOUT
Clock generating circuit
RAM ROM
X
Prescaler 12(8)
A
Timer 1( 8 ) Timer 2( 8 ) Timer X( 8 ) Timer Y( 8 )
Y
Prescaler X(8)
S PC H PS
CNTR1
PCL
CNTR0
Prescaler Y(8)
Watchdog timer
Reset
A-D converter (10)
P WM (8)
SI/O1(8)
SI/O2(8)
XCOUT INT0- INT3 XCIN
P4(5) P3(5)
P2(8)
P1(8)
P0(8)
23 38 39 40 41 42
45678
9 10 11 12 13 1416 17
22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37
I/O port P4 I/O port P3
I/O port P2
I/O port P1
I/O port P0
VREF
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
3850 Group (Spec. H)
MITSUBISHI MICROCOMPUTERS
AVSS
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION
Table 1 Pin description Pin VCC, VSS CNVSS RESET XIN XOUT P00/SIN2 P01/SOUT2 P02/SCLK2 P03/SRDY2 P04-P07 P10-P17 P20/XCOUT P21/XCIN P22 P23 P24/RxD P25/TxD P26/SCLK P27/CNTR0/ SRDY1 P30/AN0- P34/AN4 P40/CNTR1 P41/INT0 P42/INT1 P43/INT2/SCMP2 P44/INT3/PWM I/O port P4 *8-bit CMOS I/O port with the same function as port P0. I/O port P3 *CMOS compatible input level. *CMOS 3-state output structure. *8-bit CMOS I/O port with the same function as port P0. *CMOS compatible input level. *CMOS 3-state output structure. * Interrupt input pin * SCMP2 output pin * Interrupt input pin * PWM output pin * Timer Y function pin * Interrupt input pins Name Power source CNVSS input Reset input Clock input Clock output Functions *Apply voltage of 2.7 V - 5.5 V to Vcc, and 0 V to Vss. *This pin controls the operation mode of the chip. *Normally connected to VSS. *Reset input pin for active "L." *Input and output pins for the clock generating circuit. *Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the oscillation frequency. *When an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open. *8-bit CMOS I/O port. * Serial I/O2 function pin *I/O direction register allows each pin to be individually programmed as either input or output. *CMOS compatible input level. *CMOS 3-state output structure. *P10 to P17 (8 bits) are enabled to output large current for LED drive. *8-bit CMOS I/O port. *I/O direction register allows each pin to be individually programmed as either input or output. *CMOS compatible input level. *P20, P21, P24 to P27: CMOS3-state output structure. *P22, P23: N-channel open-drain structure. * Sub-clock generating circuit I/O pins (connect a resonator)
Function except a port function
I/O port P0
I/O port P1
I/O port P2
* Serial I/O1 function pin
* Serial I/O1 function pin/ Timer X function pin * A-D converter input pin
3
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PART NUMBERING
Product name
M3850 3
M
4
H- XXX
SP
Package type SP : 42P4B FP : 42P2R-A/E SS : 42S1B-A ROM number Omitted in One Time PROM version shipped in blank, EPROM version, and flash memory version. - : standard Omitted in One Time PROM version shipped in blank, EPROM version, and flash memory version. H-: Partial specification changed version ROM/PROM/Flash memory size 9 : 36864 bytes 1 : 4096 bytes A : 40960 bytes 2 : 8192 bytes 3 : 12288 bytes B : 45056 bytes 4 : 16384 bytes C : 49152 bytes 5 : 20480 bytes D : 53248 bytes 6 : 24576 bytes E : 57344 bytes 7 : 28672 bytes F : 61440 bytes 8 : 32768 bytes The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they cannot be used as a user's ROM area. However, they can be programmed or erased in the flash memory version, so that the users can use them. Memory type M : Mask ROM version E : EPROM or One Time PROM version F : Flash memory version RAM size 0 : 192 bytes 1 : 256 bytes 2 : 384 bytes 3 : 512 bytes 4 : 640 bytes
5 : 768 bytes 6 : 896 bytes 7 : 1024 bytes 8 : 1536 bytes 9 : 2048 bytes
Fig. 3 Part numbering
4
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
GROUP EXPANSION
Mitsubishi plans to expand the 3850 group (spec. H) as follows.
Packages
42P4B ......................................... 42-pin shrink plastic-molded DIP 42P2R-A/E ........................................... 42-pin plastic-molded SOP 42S1B-A .................. 42-pin shrink ceramic DIP (EPROM version)
Memory Type
Support for mask ROM, One Time PROM, and flash memory versions.
Memory Size
Flash memory size ......................................................... 32 K bytes One Time PROM size ..................................................... 24 K bytes Mask ROM size ................................................... 8 K to 32 K bytes RAM size ............................................................... 512 to 1 K bytes
Memory Expansion Plan
ROM size (bytes) ROM exteranal 32K 28K
Mass production Under development
As of Nov. 2000
M38507M8/F8
24K 20K
M38504M6/E6
Mass production
16K 12K
M38503M4H
Mass production
8K
M38503M2H
384
512
640
768
896 1024 1152 RAM size (bytes)
1280
1408
1536
2048
Products under development or planning: the development schedule and specification may be revised without notice. The development of planning products may be stopped.
Fig. 4 Memory expansion plan
5
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Currently planning products are listed below. Table 2 Support products Product name M38503M2H-XXXSP M38503M2H-XXXFP M38503M4H-XXXSP M38503M4H-XXXFP M38504M6-XXXSP M38504E6-XXXSP M388504E6SP M388504E6SS M38504M6-XXXFP M38504E6-XXXFP M38504E6FP ROM size (bytes) ROM size for User in ( ) 8192 (8062) 16384 (16254) RAM size (bytes) 512 512 Package 42P4B 42P2R-A/E 424P4B 42P2R-A/E 424P4B 24576 (24446) 640 42S1B-A 42P2R-A/E Remarks Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version One Time PROM version One Time PROM version (blank) EPROM version Mask ROM version One Time PROM version One Time PROM version (blank) As of Nov. 2000
Table 3 3850 group (standard) and 3850 group (spec. H) corresponding products 3850 group (standard) 3850 group (spec. H) M38503M2-XXXFP/SP M38503M2H-XXXFP/SP M38503M4-XXXFP/SP M38503M4H-XXXFP/SP M38503E4-XXXFP/SP M38504M6-XXXFP/SP M38503E4FP/SP M38504E6-XXXFP/SP M38503E4SS M38504E6FP/SP M38504E6SS M38507M8-XXXFP/SP M38507F8FP/SP M37516RSS
Table 4 Differences between 3850 group (standard) and 3850 group (spec. H) Serial I/O A-D converter Large current port 3850 group (standard) 1: Serial I/O (UART or Clock-synchronized) Unserviceable in low-speed mode 5: P13-P17 3850 group (spec. H) 2: Serial I/O1 (UART or Clock-synchronized) Serial I/O2 (Clock-synchronized) Serviceable in low-speed mode 8: P10-P17
Notes on differences between 3850 group (standard) and 3850 group (spec. H)
(1) The absolute maximum ratings of 3850 group (spec. H) is smaller than that of 3850 group (standard). *Power source voltage Vcc = -0.3 to 6.5 V *CNVss input voltage VI = -0.3 to Vcc +0.3 V (2) The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT may be some differences between 3850 group (standard) and 3850 group (spec. H). (3) Do not write any data to the reserved area and the reserved bit. (Do not change the contents after rest.) (4) Fix bit 3 of the CPU mode register to "1". (5) Be sure to perform the termination of unused pins.
6
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)
The 3850 group (spec. H) uses the standard 740 Family instruction set. Refer to the table of 740 Family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set. Machine-resident 740 Family instructions are as follows: The FST and SLW instructions cannot be used. The STP, WIT, MUL, and DIV instructions can be used.
[Stack Pointer (S)]
The stack pointer is an 8-bit register used during subroutine calls and interrupts. This register indicates start address of stored area (stack) for storing registers during subroutine calls and interrupts. The low-order 8 bits of the stack address are determined by the contents of the stack pointer. The high-order 8 bits of the stack address are determined by the stack page selection bit. If the stack page selection bit is "0" , the high-order 8 bits becomes "0016". If the stack page selection bit is "1", the high-order 8 bits becomes "0116". The operations of pushing register contents onto the stack and popping them from the stack are shown in Figure 6. Store registers other than those described in Figure 6 with program when the user needs them during interrupts or subroutine calls.
[Accumulator (A)]
The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.
[Index Register X (X)]
The index register X is an 8-bit register. In the index addressing modes, the value of the OPERAND is added to the contents of register X and specifies the real address.
[Program Counter (PC)]
The program counter is a 16-bit counter consisting of two 8-bit registers PCH and PCL. It is used to indicate the address of the next instruction to be executed.
[Index Register Y (Y)]
The index register Y is an 8-bit register. In partial instruction, the value of the OPERAND is added to the contents of register Y and specifies the real address.
b7 A b7 X b7 Y b7 S b15 PCH b7 b7 PCL
b0 Accumulator b0 Index register X b0 Index register Y b0 Stack pointer b0 Program counter b0 Processor status register (PS) Carry flag Zero flag Interrupt disable flag Decimal mode flag Break flag Index X mode flag Overflow flag Negative flag
NVTBD I ZC
Fig. 5 740 Family CPU register structure
7
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
On-going Routine
Interrupt request (Note) Execute JSR M (S) Push return address on stack (S) M (S) (S) (PCH) (S) - 1 (PCL) (S)- 1
M (S) (S) M (S) (S) M (S) (S)
(PCH) (S) - 1 (PCL) (S) - 1 (PS) (S) - 1 Push contents of processor status register on stack Push return address on stack
Subroutine Execute RTS POP return address from stack (S) (PCL) (S) (PCH) (S) + 1 M (S) (S) + 1 M (S)
Interrupt Service Routine
Execute RTI (S) (PS) (S) (PCL) (S) (PCH) (S) + 1 M (S) (S) + 1 M (S) (S) + 1 M (S)
I Flag is set from "0" to "1" Fetch the jump vector POP contents of processor status register from stack
POP return address from stack
Note: Condition for acceptance of an interrupt
Interrupt enable flag is "1" Interrupt disable flag is "0"
Fig. 6 Register push and pop at interrupt generation and subroutine call Table 5 Push and pop instructions of accumulator or processor status register Push instruction to stack Accumulator Processor status register PHA PHP Pop instruction from stack PLA PLP
8
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
[Processor status register (PS)]
The processor status register is an 8-bit register consisting of 5 flags which indicate the status of the processor after an arithmetic operation and 3 flags which decide MCU operation. Branch operations can be performed by testing the Carry (C) flag , Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid. *Bit 0: Carry flag (C) The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction. *Bit 1: Zero flag (Z) The Z flag is set if the result of an immediate arithmetic operation or a data transfer is "0", and cleared if the result is anything other than "0". *Bit 2: Interrupt disable flag (I) The I flag disables all interrupts except for the interrupt generated by the BRK instruction. Interrupts are disabled when the I flag is "1". *Bit 3: Decimal mode flag (D) The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is "0"; decimal arithmetic is executed when it is "1". Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal arithmetic.
*Bit 4: Break flag (B) The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always "0". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to "1". *Bit 5: Index X mode flag (T) When the T flag is "0", arithmetic operations are performed between accumulator and memory. When the T flag is "1", direct arithmetic operations and direct data transfers are enabled between memory locations. *Bit 6: Overflow flag (V) The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128. When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag. *Bit 7: Negative flag (N) The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.
Table 6 Set and clear instructions of each bit of processor status register C flag Set instruction Clear instruction SEC CLC Z flag _ _ I flag SEI CLI D flag SED CLD B flag _ _ T flag SET CLT V flag _ CLV N flag _ _
9
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
[CPU Mode Register (CPUM)] 003B16
The CPU mode register contains the stack page selection bit, etc. The CPU mode register is allocated at address 003B16.
b7
b0
CPU mode register
(CPUM : address 003B16)
Processor mode bits b1 b0 0 0 : Single-chip mode 0 1: 1 0 : Not available 1 1: Stack page selection bit 0 : 0 page 1 : 1 page Fix this bit to "1". Port XC switch bit 0 : I/O port function (stop oscillating) 1 : XCIN-XCOUT oscillating function Main clock (XIN-XOUT) stop bit 0 : Oscillating 1 : Stopped Main clock division ratio selection bits b7 b6 0 0 : = f(XIN)/2 (high-speed mode) 0 1 : = f(XIN)/8 (middle-speed mode) 1 0 : = f(XCIN)/2 (low-speed mode) 1 1 : Not available
Fig. 7 Structure of CPU mode register
10
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MEMORY Special Function Register (SFR) Area
The Special Function Register area in the zero page contains control registers such as I/O ports and timers.
Zero Page
Access to this area with only 2 bytes is possible in the zero page addressing mode.
Special Page RAM
RAM is used for data storage and for stack area of subroutine calls and interrupts. Access to this area with only 2 bytes is possible in the special page addressing mode.
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.
Interrupt Vector Area
The interrupt vector area contains reset and interrupt vectors.
RAM area
RAM size (bytes) Address XXXX16
000016 SFR area 004016 010016 Zero page
192 256 384 512 640 768 896 1024 1536 2048
00FF16 013F16 01BF16 023F16 02BF16 033F16 03BF16 043F16 063F16 083F16
RAM
XXXX16 Not used 0FF016 0FFF16 SFR area (Note) Not used
ROM area
ROM size (bytes) Address YYYY16 Address ZZZZ16
YYYY16 Reserved ROM area
(128 bytes)
4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440
F00016 E00016 D00016 C00016 B00016 A00016 900016 800016 700016 600016 500016 400016 300016 200016 100016
F08016 E08016 D08016 C08016 B08016 A08016 908016 808016 708016 608016 508016 408016 308016 208016 108016
ZZZZ16
ROM FF0016 FFDC16 Interrupt vector area FFFE16 FFFF16 Special page
Reserved ROM area
Note: Flash memory version only
Fig. 8 Memory map diagram
11
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
000016 000116 000216 000316 000416 000516 000616 000716 000816 000916 000A16 000B16 000C16 000D16 000E16 000F16 001016 001116 001216 001316 001416 001516 001616 001716 001816 001916 001A16 001B16 001C16 001D16 001E16 001F16
Port P0 (P0) Port P0 direction register (P0D) Port P1 (P1) Port P1 direction register (P1D) Port P2 (P2) Port P2 direction register (P2D) Port P3 (P3) Port P3 direction register (P3D) Port P4 (P4) Port P4 direction register (P4D)
002016 002116 002216 002316 002416 002516 002616 002716 002816 002916 002A16 002B16 002C16 002D16 002E16 002F16 003016 003116
Prescaler 12 (PRE12) Timer 1 (T1) Timer 2 (T2) Timer XY mode register (TM) Prescaler X (PREX) Timer X (TX) Prescaler Y (PREY) Timer Y (TY) Timer count source selection register (TCSS)
Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Reserved Reserved Reserved Serial I/O2 control register 1 (SIO2CON1) Serial I/O2 control register 2 (SIO2CON2) Serial I/O2 register (SIO2) Transmit/Receive buffer register (TB/RB) Serial I/O1 status register (SIOSTS) Serial I/O1 control register (SIOCON) UART control register (UARTCON) Baud rate generator (BRG) PWM control register (PWMCON) PWM prescaler (PREPWM) PWM register (PWM)
003216 003316 003416 003516 003616 003716 003816 003916 003A16 003B16 003C16 003D16 003E16 003F16 A-D control register (ADCON) A-D conversion low-order register (ADL) A-D conversion high-order register (ADH) Reserved MISRG Watchdog timer control register (WDTCON) Interrupt edge selection register (INTEDGE) CPU mode register (CPUM) Interrupt request register 1 (IREQ1) Interrupt request register 2 (IREQ2) Interrupt control register 1 (ICON1) Interrupt control register 2 (ICON2)
Reserved : Do not write any data to this addresses, because these areas are reserved.
Fig. 9 Memory map of special function register (SFR)
12
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
I/O PORTS
The I/O ports have direction registers which determine the input/ output direction of each individual pin. Each bit in a direction register corresponds to one pin, and each pin can be set to be input port or output port. When "0" is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin. If data is read from a pin which is set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating. Table 7 I/O port function Pin P00/SIN2 P01/SOUT2 P02/SCLK2 P03/SRDY2 P04-P07 P10-P17 P20/XCOUT P21/XCIN P22 P23 P24/RxD P25/TxD P26/SCLK P27/CNTR0/SRDY1 P30/AN0- P34/AN4 P40/CNTR1 P41/INT0 P42/INT1 P43/INT2/SCMP2 Name Input/Output I/O Structure Non-Port Function Related SFRs Ref.No. (1) (2) (3) (4) (5) Sub-clock generating circuit CMOS compatible input level N-channel open-drain output Input/output, individual bits Serial I/O1 function I/O Serial I/O1 function I/O Timer X function I/O A-D conversion input CMOS compatible input level CMOS 3-state output Timer Y function I/O External interrupt input External interrupt input SCMP2 output External interrupt input PWM output Serial I/O1 control register Serial I/O1 control register Timer XY mode register A-D control register Timer XY mode register Interrupt edge selection register Interrupt edge selection register Serial I/O2 control register Interrupt edge selection register PWM control register CPU mode register (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Port P0 CMOS compatible input level CMOS 3-state output Port P1
Serial I/O2 function I/O
Serial I/O2 control register
Port P2
Port P3
Port P4 P44/INT3/PWM
(16)
(17)
13
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(1) Port P00
Direction register
(2) Port P01
P01/SOUT2 P-channel output disable bit Serial I/O2 Transmit completion signal Serial I/O2 port selection bit Direction register
Data bus
Port latch
Data bus
Port latch
Serial I/O2 input Serial I/O2 output
(3) Port P02 (4) Port P03
P02/SCLK2 P-channel output disable bit Serial I/O2 synchronous clock selection bit Serial I/O2 port selection bit Direction register Data bus Data bus Port latch SRDY2 output enable bit Direction register
Port latch
Serial I/O2 ready output Serial I/O2 clock output Serial I/O2 external clock input
(5) Ports P04-P07,P1
Direction register
(6) Port P20
Port XC switch bit Direction register
Data bus
Port latch
Data bus
Port latch
Oscillator Port P21
(7) Port P21
Port XC switch bit Direction register Direction register
Port XC switch bit
(8) Ports P22,P23
Data bus
Port latch Data bus
Port latch
Sub-clock generating circuit input
Fig. 10 Port block diagram (1)
14
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(9) Port P24
Serial I/O1 enable bit Receive enable bit Direction register Port latch
(10) Port P25
P-channel output disable bit Serial I/O1 enable bit Transmit enable bit Direction register
Data bus
Data bus
Port latch
Serial I/O1 input Serial I/O1 output
(11) Port P26
Serial I/O1 synchronous clock selection bit Serial I/O1 enable bit Serial I/O1 mode selection bit Serial I/O1 enable bit Direction register Data bus Port latch
(12) Port P27
Pulse output mode Serial I/O1 mode selection bit Serial I/O1 enable bit SRDY1 output enable bit Direction register Data bus Port latch
Pulse output mode Serial I/O1 clock output External clock input Serial ready output Timer output CNTR0 interrupt input
(13) Ports P30-P34
(14) Port P40
Direction register Direction register
Data bus Data bus Port latch
Port latch
A-D converter input Analog input pin selection bit
Pulse output mode Timer output CNTR1 interrupt input
(16) Port P43 (15) Ports P41,P42
Direction register Serial I/O2 I/O comparison signal control bit Direction register
Data bus
Port latch
Data bus
Port latch
Interrupt input
Serial I/O2 I/O comparison signal output Interrupt input
Fig. 11 Port block diagram (2)
15
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(17) Port P44
PWM output enable bit Direction register
Data bus
Port latch
PWM output Interrupt input
Fig. 12 Port block diagram (3)
16
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
INTERRUPTS
Interrupts occur by 15 sources among 15 sources: six external, eight internal, and one software.
sNotes
When the active edge of an external interrupt (INT0-INT3, CNTR0, CNTR1) is set, the corresponding interrupt request bit may also be set. Therefore, take the following sequence: 1. Disable the interrupt 2. Change the interrupt edge selection register (the timer XY mode register for CNTR0 and CNTR1) 3. Clear the interrupt request bit to "0" 4. Accept the interrupt.
Interrupt Control
Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are "1" and the interrupt disable flag is "0". Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the BRK instruction interrupt. When several interrupts occur at the same time, the interrupts are received according to priority.
Interrupt Operation
By acceptance of an interrupt, the following operations are automatically performed: 1. The contents of the program counter and the processor status register are automatically pushed onto the stack. 2. The interrupt disable flag is set and the corresponding interrupt request bit is cleared. 3. The interrupt jump destination address is read from the vector table into the program counter.
17
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 8 Interrupt vector addresses and priority Interrupt Source Reset (Note 2) INT0 Reserved INT1 INT2 INT3/ Serial I/O2 Priority 1 2 3 4 5 6 Vector Addresses (Note 1) High Low FFFD16 FFFC16 FFFB16 FFF916 FFF716 FFF516 FFF316 FFFA16 FFF816 FFF616 FFF416 FFF216 Interrupt Request Generating Conditions At reset At detection of either rising or falling edge of INT0 input Reserved At detection of either rising or falling edge of INT1 input At detection of either rising or falling edge of INT2 input At detection of either rising or falling edge of INT3 input/ At completion of serial I/O2 data reception/transmission Reserved At timer X underflow At timer Y underflow At timer 1 underflow At timer 2 underflow At completion of serial I/O1 data reception At completion of serial I/O1 transfer shift or when transmission buffer is empty At detection of either rising or falling edge of CNTR0 input At detection of either rising or falling edge of CNTR1 input At completion of A-D conversion At BRK instruction execution Non-maskable software interrupt Valid when serial I/O1 is selected Valid when serial I/O1 is selected External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable) Switch by Serial I/O2/INT3 interrupt source bit Remarks Non-maskable External interrupt (active edge selectable)
Reserved Timer X Timer Y Timer 1 Timer 2 Serial I/O1 reception Serial I/O1 transmission CNTR0 CNTR1 A-D converter BRK instruction
7 8 9 10 11 12
FFF116 FFEF16 FFED16 FFEB16 FFE916 FFE716
FFF016 FFEE16 FFEC16 FFEA16 FFE816 FFE616
STP release timer underflow
13
FFE516
FFE416
14 15 16 17
FFE316 FFE116 FFDF16 FFDD16
FFE216 FFE016 FFDE16 FFDC16
Notes 1: Vector addresses contain interrupt jump destination addresses. 2: Reset function in the same way as an interrupt with the highest priority.
18
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Interrupt request bit Interrupt enable bit
Interrupt disable flag (I)
BRK instruction Reset
Interrupt request
Fig. 13 Interrupt control
b7
b0
Interrupt edge selection register (INTEDGE : address 003A16) INT0 active edge selection bit INT1 active edge selection bit 0 : Falling edge active 1 : Rising edge active INT2 active edge selection bit INT3 active edge selection bit Serial I/O2 / INT3 interrupt source bit 0 : INT3 interrupt selected 1 : Serial I/O2 interrupt selected Not used (returns "0" when read)
b7
b0 Interrupt request register 1 (IREQ1 : address 003C16) INT0 interrupt request bit Reserved INT1 interrupt request bit INT2 interrupt request bit INT3 / Serial I/O2 interrupt request bit Reserved Timer X interrupt request bit Timer Y interrupt request bit 0 : No interrupt request issued 1 : Interrupt request issued
b7
b0 Interrupt request register 2 (IREQ2 : address 003D16) Timer 1 interrupt request bit Timer 2 interrupt request bit Serial I/O1 reception interrupt request bit Serial I/O1 transmit interrupt request bit CNTR0 interrupt request bit CNTR1 interrupt request bit AD converter interrupt request bit Not used (returns "0" when read) 0 : No interrupt request issued 1 : Interrupt request issued
b7
b0 Interrupt control register 1 (ICON1 : address 003E16) INT0 interrupt enable bit Reserved(Do not write "1" to this bit.) INT1 interrupt enable bit INT2 interrupt enable bit INT3 / Serial I/O2 interrupt enable bit Reserved(Do not write "1" to this bit.) Timer X interrupt enable bit Timer Y interrupt enable bit 0 : Interrupts disabled 1 : Interrupts enabled
b7
b0
Interrupt control register 2 (ICON2 : address 003F16) Timer 1 interrupt enable bit Timer 2 interrupt enable bit Serial I/O1 reception interrupt enable bit Serial I/O1 transmit interrupt enable bit CNTR0 interrupt enable bit CNTR1 interrupt enable bit AD converter interrupt enable bit Not used (returns "0" when read) (Do not write "1" to this bit.) 0 : Interrupts disabled 1 : Interrupts enabled
Fig. 14 Structure of interrupt-related registers
19
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMERS
The 3850 group (spec. H) has four timers: timer X, timer Y, timer 1, and timer 2. The division ratio of each timer or prescaler is given by 1/(n + 1), where n is the value in the corresponding timer or prescaler latch. All timers are count down. When the timer reaches "0016", an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to "1".
Timer 1 and Timer 2
The count source of prescaler 12 is the oscillation frequency which is selected by timer 12 count source selection bit. The output of prescaler 12 is counted by timer 1 and timer 2, and a timer underflow sets the interrupt request bit.
Timer X and Timer Y
Timer X and Timer Y can each select in one of four operating modes by setting the timer XY mode register.
(1) Timer Mode
The timer counts the count source selected by Timer count source selection bit.
b7 b0 Timer XY mode register (TM : address 002316) Timer X operating mode bit b1b0 0 0: Timer mode 0 1: Pulse output mode 1 0: Event counter mode 1 1: Pulse width measurement mode CNTR0 active edge selection bit 0: Interrupt at falling edge Count at rising edge in event counter mode 1: Interrupt at rising edge Count at falling edge in event counter mode Timer X count stop bit 0: Count start 1: Count stop Timer Y operating mode bits b5b4 0 0: Timer mode 0 1: Pulse output mode 1 0: Event counter mode 1 1: Pulse width measurement mode CNTR1 active edge selection bit 0: Interrupt at falling edge Count at rising edge in event counter mode 1: Interrupt at rising edge Count at falling edge in event counter mode Timer Y count stop bit 0: Count start 1: Count stop
(2) Pulse Output Mode
The timer counts the count source selected by Timer count source selection bit. Whenever the contents of the timer reach "0016", the signal output from the CNTR0 (or CNTR1) pin is inverted. If the CNTR0 (or CNTR1) active edge selection bit is "0", output begins at " H". If it is "1", output starts at "L". When using a timer in this mode, set the corresponding port P27 ( or port P40) direction register to output mode.
(3) Event Counter Mode
Operation in event counter mode is the same as in timer mode, except that the timer counts signals input through the CNTR0 or CNTR1 pin. When the CNTR0 (or CNTR1) active edge selection bit is "0", the rising edge of the CNTR0 (or CNTR1) pin is counted. When the CNTR0 (or CNTR1) active edge selection bit is "1", the falling edge of the CNTR0 (or CNTR1) pin is counted.
(4) Pulse Width Measurement Mode
If the CNTR0 (or CNTR1) active edge selection bit is "0", the timer counts the selected signals by the count source selection bit while the CNTR0 (or CNTR1) pin is at "H". If the CNTR0 (or CNTR1) active edge selection bit is "1", the timer counts it while the CNTR0 (or CNTR1) pin is at "L". The count can be stopped by setting "1" to the timer X (or timer Y) count stop bit in any mode. The corresponding interrupt request bit is set each time a timer underflows.
Fig. 15 Structure of timer XY mode register
b7
b0 Timer count source selection register (TCSS : address 002816) Timer X count source selection bit 0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode) 1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode) Timer Y count source selection bit 0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode) 1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode) Timer 12 count source selection bit 0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode) 1 : f(XCIN) Not used (returns "0" when read)
sNote
When switching the count source by the timer 12, X and Y count source bit, the value of timer count is altered in unconsiderable amount owing to generating of a thin pulses in the count input signals. Therefore, select the timer count source before set the value to the prescaler and the timer.
Fig. 16 Structure of timer count source selection register
20
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Data bus
f(XIN)/16 (f(XCIN)/16 at low-speed mode) f(XIN)/2 Pulse width (f(XCIN)/2 at low-speed mode) Timer X count source selection bit measurement mode
Prescaler X latch (8) Timer mode Pulse output mode Prescaler X (8) CNTR0 active edge selection bit "0 " "1 " Event counter mode Timer X count stop bit
Timer X latch (8)
Timer X (8)
To timer X interrupt request bit
P27/CNTR0
To CNTR0 interrupt request bit
CNTR0 active edge selection "1" bit "0"
Q Q
Toggle flip-flop T R Timer X latch write pulse Pulse output mode
Port P27 direction register
Port P27 latch Pulse output mode Data bus
f(XIN)/16 (f(XCIN)/16 at low-speed mode) f(XIN)/2 (f(XCIN)/2 at low-speed mode) Timer Y count source selection bit CNTR1 active edge selection bit "0 " "1 " Pulse width measurement mode
Prescaler Y latch (8) Timer mode Pulse output mode Prescaler Y (8)
Timer Y latch (8)
Timer Y (8)
To timer Y interrupt request bit
P40/CNTR1
Event counter mode
Timer Y count stop bit To CNTR1 interrupt request bit
CNTR1 active edge selection "1" bit "0"
Q Toggle flip-flop T Q R Timer Y latch write pulse Pulse output mode
Port P40 direction register
Port P40latch
Pulse output mode Data bus
Prescaler 12 latch (8)
Timer 1 latch (8)
Timer 2 latch (8)
f(XIN)/16 (f(XCIN)/16 at low-speed mode) f(XCIN) Timer 12 count source selection bit
Prescaler 12 (8)
Timer 1 (8)
Timer 2 (8)
To timer 2 interrupt request bit To timer 1 interrupt request bit
Fig. 17 Block diagram of timer X, timer Y, timer 1, and timer 2
21
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
SERIAL I/O qSERIAL I/O1
Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.
(1) Clock Synchronous Serial I/O Mode
Clock synchronous serial I/O mode can be selected by setting the serial I/O1 mode selection bit of the serial I/O1 control register (bit 6 of address 001A16) to "1". For clock synchronous serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB.
Data bus Address 001816 Receive buffer register P24/RXD Receive shift register Shift clock Serial I/O1 control register Address 001A16
Receive buffer full flag (RBF) Receive interrupt request (RI) Clock control circuit
P26/SCLK Serial I/O1 synchronous clock selection bit Frequency division ratio 1/(n+1) Baud rate generator 1/4 Address 001C16 Clock control circuit Shift clock P25/TXD Transmit shift register Transmit buffer register Address 001816 Data bus Transmit shift completion flag (TSC) Transmit interrupt source selection bit Transmit interrupt request (TI) Transmit buffer empty flag (TBE) Serial I/O1 status register Address 001916
XIN
BRG count source selection bit 1/4
P27/SRDY1
F/F
Falling-edge detector
Fig. 18 Block diagram of clock synchronous serial I/O1
Transfer shift clock (1/2 to 1/2048 of the internal clock, or an external clock) Serial output TxD Serial input RxD D0 D0 D1 D1 D2 D2 D3 D3 D4 D4 D5 D5 D6 D6 D7 D7
Receive enable signal SRDY1 Write pulse to receive/transmit buffer register (address 001816) TBE = 0 RBF = 1 TSC = 1 Overrun error (OE) detection
TBE = 1 TSC = 0
Notes 1: As the transmit interrupt (TI), either when the transmit buffer has emptied (TBE=1) or after the transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1 control register. 2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is output continuously from the TxD pin. 3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes "1" .
Fig. 19 Operation of clock synchronous serial I/O1 function
22
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(2) Asynchronous Serial I/O (UART) Mode
Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O1 mode selection bit (b6) of the serial I/O1 control register to "0". Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical. The transmit and receive shift registers each have a buffer, but the
two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer register, and receive data is read from the receive buffer register. The transmit buffer register can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.
Data bus Address 001816 Serial I/O1 control register Address 001A16 Receive buffer full flag (RBF) Receive interrupt request (RI) 1/16 PE FE SP detector Clock control circuit Serial I/O1 synchronous clock selection bit P26/SCLK BRG count source selection bit Frequency division ratio 1/(n+1) Baud rate generator Address 001C16 1/4 ST/SP/PA generator 1/16 P25/TXD Character length selection bit Transmit buffer register Address 001816 Data bus Transmit buffer empty flag (TBE) Serial I/O1 status register Address 001916 Transmit shift register Transmit shift completion flag (TSC) Transmit interrupt source selection bit Transmit interrupt request (TI) UART control register Address 001B16
P24/RXD
Receive buffer register OE Character length selection bit ST detector 7 bits Receive shift register 8 bits
XIN
Fig. 20 Block diagram of UART serial I/O1
23
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Transmit or receive clock
Transmit buffer write signal TBE=0 TSC=0 TBE=1 Serial output TXD ST TBE=0 TBE=1 TSC=1
D0
D1 1 start bit 7 or 8 data bit 1 or 0 parity bit 1 or 2 stop bit (s)
SP
ST
D0
D1
SP Generated at 2nd bit in 2-stop-bit mode
Receive buffer read signal
RBF=0 RBF=1 RBF=1
Serial input RXD
ST
D0
D1
SP
ST
D0
D1
SP
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception). 2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes "1," can be selected to occur depending on the setting of the transmit interrupt source selection bit (TIC) of the serial I/O1 control register. 3: The receive interrupt (RI) is set when the RBF flag becomes "1." 4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.
Fig. 21 Operation of UART serial I/O1 function
[Transmit Buffer Register/Receive Buffer Register (TB/RB)] 001816
The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is "0".
[Serial I/O1 Control Register (SIOCON)] 001A16
The serial I/O1 control register consists of eight control bits for the serial I/O1 function.
[UART Control Register (UARTCON)] 001B16
The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer and one bit (bit 4) which is always valid and sets the output structure of the P25/TXD pin.
[Serial I/O1 Status Register (SIOSTS)] 001916
The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O1 function and various errors. Three of the flags (bits 4 to 6) are valid only in UART mode. The receive buffer full flag (bit 1) is cleared to "0" when the receive buffer register is read. If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O1 status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing "0" to the serial I/O1 enable bit SIOE (bit 7 of the serial I/O1 control register) also clears all the status flags, including the error flags. Bits 0 to 6 of the serial I/O1 status register are initialized to "0" at reset, but if the transmit enable bit (bit 4) of the serial I/O1 control register has been set to "1", the transmit shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become "1".
[Baud Rate Generator (BRG)] 001C16
The baud rate generator determines the baud rate for serial transfer. The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate generator.
24
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
Serial I/O1 status register (SIOSTS : address 001916) Transmit buffer empty flag (TBE) 0: Buffer full 1: Buffer empty Receive buffer full flag (RBF) 0: Buffer empty 1: Buffer full Transmit shift completion flag (TSC) 0: Transmit shift in progress 1: Transmit shift completed Overrun error flag (OE) 0: No error 1: Overrun error Parity error flag (PE) 0: No error 1: Parity error Framing error flag (FE) 0: No error 1: Framing error Summing error flag (SE) 0: (OE) U (PE) U (FE)=0 1: (OE) U (PE) U (FE)=1 Not used (returns "1" when read)
b7
b0
Serial I/O1 control register (SIOCON : address 001A16) BRG count source selection bit (CSS) 0: f(XIN) 1: f(XIN)/4 Serial I/O1 synchronous clock selection bit (SCS) 0: BRG output divided by 4 when clock synchronous serial I/O1 is selected, BRG output divided by 16 when UART is selected. 1: External clock input when clock synchronous serial I/O1 is selected, external clock input divided by 16 when UART is selected. SRDY1 output enable bit (SRDY) 0: P27 pin operates as ordinary I/O pin 1: P27 pin operates as SRDY1 output pin Transmit interrupt source selection bit (TIC) 0: Interrupt when transmit buffer has emptied 1: Interrupt when transmit shift operation is completed Transmit enable bit (TE) 0: Transmit disabled 1: Transmit enabled Receive enable bit (RE) 0: Receive disabled 1: Receive enabled Serial I/O1 mode selection bit (SIOM) 0: Clock asynchronous (UART) serial I/O 1: Clock synchronous serial I/O Serial I/O1 enable bit (SIOE) 0: Serial I/O1 disabled (pins P24 to P27 operate as ordinary I/O pins) 1: Serial I/O1 enabled (pins P24 to P27 operate as serial I/O1 pins)
b7
b0
UART control register (UARTCON : address 001B16) Character length selection bit (CHAS) 0: 8 bits 1: 7 bits Parity enable bit (PARE) 0: Parity checking disabled 1: Parity checking enabled Parity selection bit (PARS) 0: Even parity 1: Odd parity Stop bit length selection bit (STPS) 0: 1 stop bit 1: 2 stop bits P25/TXD P-channel output disable bit (POFF) 0: CMOS output (in output mode) 1: N-channel open drain output (in output mode) Not used (return "1" when read)
Fig. 22 Structure of serial I/O1 control registers
25
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
qSERIAL I/O2
The serial I/O2 can be operated only as the clock synchronous type. As a synchronous clock for serial transfer, either internal clock or external clock can be selected by the serial I/O2 synchronous clock selection bit (b6) of serial I/O2 control register 1. The internal clock incorporates a dedicated divider and permits selecting 6 types of clock by the internal synchronous clock selection bits (b2, b1, b0) of serial I/O2 control register 1. Regarding SOUT2 and SCLK2 being output pins, either CMOS output format or N-channel open-drain output format can be selected by the P01/SOUT2, P02/S CLK2 P-channel output disable bit (b7) of serial I/O2 control register 1. When the internal clock has been selected, a transfer starts by a write signal to the serial I/O2 register (address 001716). After completion of data transfer, the level of the SOUT2 pin goes to high impedance automatically but bit 7 of the serial I/O2 control register 2 is not set to "1" automatically. When the external clock has been selected, the contents of the serial I/O2 register is continuously sifted while transfer clocks are input. Accordingly, control the clock externally. Note that the SOUT2 pin does not go to high impedance after completion of data transfer. To cause the SOUT2 pin to go to high impedance in the case where the external clock is selected, set bit 7 of the serial I/O2 control register 2 to "1" when SCLK2 is "H" after completion of data transfer. After the next data transfer is started (the transfer clock falls), bit 7 of the serial I/O2 control register 2 is set to "0" and the SOUT2 pin is put into the active state. Regardless of the internal clock to external clock, the interrupt request bit is set after the number of bits (1 to 8 bits) selected by the optional transfer bit is transferred. In case of a fractional number of bits less than 8 bits as the last data, the received data to be stored in the serial I/O2 register becomes a fractional number of bits close to MSB if the transfer direction selection bit of serial I/O2 control register 1 is LSB first, or a fractional number of bits close to LSB if the said bit is MSB first. For the remaining bits, the previously received data is shifted. At transmit operation using the clock synchronous serial I/O, the SCMP2 signal can be output by comparing the state of the transmit pin SOUT2 with the state of the receive pin SIN2 in synchronization with a rise of the transfer clock. If the output level of the SOUT2 pin is equal to the input level to the SIN2 pin, "L" is output from the SCMP2 pin. If not, "H" is output. At this time, an INT2 interrupt request can also be generated. Select a valid edge by bit 2 of the interrupt edge selection register (address 003A16).
b7 b0
Serial I/O2 control register 1 (SIO2CON1 : address 001516) Internal synchronous clock selection bits
b2 b1 b0
0 0 0 0 1 1
0 0 1 1 1 1
0: f(XIN)/8 (f(XCIN)/8 in low-speed mode) 1: f(XIN)/16 (f(XCIN)/16 in low-speed mode) 0: f(XIN)/32 (f(XCIN)/32 in low-speed mode) 1: f(XIN)/64 (f(XCIN)/64 in low-speed mode) 0: f(XIN)/128 f(XCIN)/128 in low-speed mode) 1: f(XIN)/256 (f(XCIN)/256 in low-speed mode)
Serial I/O2 port selection bit 0: I/O port 1: SOUT2,SCLK2 output pin
SRDY2 output enable bit 0: P03 pin is normal I/O pin 1: P03 pin is SRDY2 output pin Transfer direction selection bit 0: LSB first 1: MSB first Serial I/O2 synchronous clock selection bit 0: External clock 1: Internal clock P01/SOUT2 ,P02/SCLK2 P-channel output disable bit 0: CMOS output (in output mode) 1: N-channel open-drain output (in output mode )
b7 b0
Serial I/O2 control register 2 (SIO2CON2 : address 001616) Optional transfer bits
b2 b1 b0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0: 1 bit 1: 2 bit 0: 3 bit 1: 4 bit 0: 5 bit 1: 6 bit 0: 7 bit 1: 8 bit
Not used ( returns "0" when read) Serial I/O2 I/O comparison signal control bit 0: P43 I/O 1: SCMP2 output SOUT2 pin control bit (P01) 0: Output active 1: Output high-impedance
Fig. 23 Structure of Serial I/O2 control registers 1, 2
[Serial I/O2 Control Registers 1, 2 (SIO2CON1 / SIO2CON2)] 001516, 001616
The serial I/O2 control registers 1 and 2 are containing various selection bits for serial I/O2 control as shown in Figure 23.
26
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
1/8
XCIN
Divider
Internal synchronous clock selection bits
Main clock division ratio selection bits (Note)
"10" "00" "01"
1/16 1/32 1/64 1/128 1/256
Data bus
XIN
P03 latch
"0" Serial I/O2 synchronous clock selection bit
P03/SRDY2
"1" "0"
SCLK2
SRDY2 Synchronous circuit "1" SRDY2 output enable bit External clock
P02 latch
"0"
Optional transfer bits (3) Serial I/O counter 2 (3) Serial I/O2 interrupt request
P02/SCLK2
"1" Serial I/O2 port selection bit
P01 latch
"0"
P01/SOUT2
"1" Serial I/O2 port selection bit
P00/SIN2
Serial I/O2 register (8)
P43 latch
"0"
P43/SCMP2/INT2
"1" Serial I/O2 I/O comparison signal control bit
D Q
Note: Either high-speed, middle-speed or low-speed mode is selected by bits 6 and 7 of CPU mode register.
Fig. 24 Block diagram of Serial I/O2
Transfer clock (Note 1) Write-in signal to serial I/O2 register
(Note 2)
Serial I/O2 output SOUT2 Serial I/O2 input SIN2
D0
D1
.
D2
D3
D4
D5
D6
D7
Receive enable signal SRDY2
Serial I/O2 interrupt request bit set
Notes 1: When the internal clock is selected as a transfer clock, the f(XIN) clock division (f(XCIN) in low-speed mode) can be selected by setting bits 0 to 2 of serial I/O2 control register 1. 2: When the internal clock is selected as a transfer clock, the SOUT2 pin has high impedance after transfer completion.
Fig. 25 Timing chart of Serial I/O2
27
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
SCMP2 SCLK2 SOUT2 SIN2
Judgement of I/O data comparison
Fig. 26 SCMP2 output operation
28
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PULSE WIDTH MODULATION (PWM)
The 3850 group (spec. H) has a PWM function with an 8-bit resolution, based on a signal that is the clock input XIN or that clock input divided by 2.
PWM Operation
When bit 0 (PWM enable bit) of the PWM control register is set to "1", operation starts by initializing the PWM output circuit, and pulses are output starting at an "H". If the PWM register or PWM prescaler is updated during PWM output, the pulses will change in the cycle after the one in which the change was made.
Data Setting
The PWM output pin also functions as port P44. Set the PWM period by the PWM prescaler, and set the "H" term of output pulse by the PWM register. If the value in the PWM prescaler is n and the value in the PWM register is m (where n = 0 to 255 and m = 0 to 255) : PWM period = 255 (n+1) / f(XIN) = 31.875 (n+1) s (when f(XIN) = 8 MHz,count source selection bit = "0") Output pulse "H" term = PWM period m / 255 = 0.125 (n+1) m s (when f(XIN) = 8 MHz,count source selection bit = "0")
31.875 m (n+1) s 255 PWM output T = [31.875 (n+1)] s m: Contents of PWM register n : Contents of PWM prescaler T : PWM period (when f(XIN) = 8 MHz,count source selection bit = "0")
Fig. 27 Timing of PWM period
Data bus
PWM prescaler pre-latch
PWM register pre-latch
Transfer control circuit
PWM prescaler latch Count source selection bit XIN (XCIN at low-speed mode) 1/2 "0" "1" PWM prescaler
PWM register latch
Port P44 PWM register
Port P44 latch
PWM enable bit
Fig. 28 Block diagram of PWM function
29
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
PWM control register (PWMCON : address 001D16) PWM function enable bit 0: PWM disabled 1: PWM enabled Count source selection bit 0: f(XIN) (f(XCIN) at low-speed mode) 1: f(XIN)/2 (f(XCIN)/2 at low-speed mode) Not used (return "0" when read)
Fig. 29 Structure of PWM control register
A PWM output T PWM register write signal
B
C
B= C T T2
T (Changes "H" term from "A" to "B".)
T2
PWM prescaler write signal
(Changes PWM period from "T" to "T2".)
When the contents of the PWM register or PWM prescaler have changed, the PWM output will change from the next period after the change.
Fig. 30 PWM output timing when PWM register or PWM prescaler is changed
sNote
The PWM starts after the PWM function enable bit is set to enable and "L" level is output from the PWM pin. The length of this "L" level output is as follows:
n+1 2 * f(XIN) n+1 f(XIN)
sec
(Count source selection bit = 0, where n is the value set in the prescaler)
sec
(Count source selection bit = 1, where n is the value set in the prescaler)
30
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
A-D CONVERTER [A-D Conversion Registers (ADL, ADH)] 003516, 003616
The A-D conversion registers are read-only registers that store the result of an A-D conversion. Do not read these registers during an A-D conversion.
b7
b0
AD control register (ADCON : address 003416) Analog input pin selection bits
b2 b1 b0
[AD Control Register (ADCON)] 003416
The AD control register controls the A-D conversion process. Bits 0 to 2 select a specific analog input pin. Bit 4 indicates the completion of an A-D conversion. The value of this bit remains at "0" during an A-D conversion and changes to "1" when an A-D conversion ends. Writing "0" to this bit starts the A-D conversion.
0 0 0 0 1
0 0 1 1 0
0: P30/AN0 1: P31/AN1 0: P32/AN2 1: P33/AN3 0: P34/AN4
Not used (returns "0" when read) A-D conversion completion bit 0: Conversion in progress 1: Conversion completed Not used (returns "0" when read)
Comparison Voltage Generator
The comparison voltage generator divides the voltage between AVSS and VREF into 1024 and outputs the divided voltages. Fig. 31 Structure of AD control register
Channel Selector
The channel selector selects one of ports P30/AN0 to P34/AN4 and inputs the voltage to the comparator.
10-bit reading (Read address 003616 before 003516)
b7
Comparator and Control Circuit
The comparator and control circuit compare an analog input voltage with the comparison voltage, and the result is stored in the A-D conversion registers. When an A-D conversion is completed, the control circuit sets the A-D conversion completion bit and the A-D interrupt request bit to "1". Note that because the comparator consists of a capacitor coupling, set f(XIN) to 500 kHz or more during an A-D conversion. When the A-D converter is operated at low-speed mode, f(XIN) and f(XCIN) do not have the lower limit of frequency, because of the A-D converter has a built-in self-oscillation circuit.
(Address 003616)
b7
b0 b9 b8
(Address 003516)
b0 b7 b6 b5 b4 b3 b2 b1 b0
Note : The high-order 6 bits of address 003616 become "0" at reading.
8-bit reading (Read only address 003516)
b7 b0
(Address 003516) b9 b8 b7 b6 b5 b4 b3 b2
Fig. 32 Structure of A-D conversion registers
Data bus
AD control register (Address 003416)
b7
b0
3 P30/AN0 P31/AN1 P32/AN2 P33/AN3 P34/AN4 A-D control circuit A-D interrupt request
Channel selector
Comparator
A-D conversion high-order register (Address 003616) A-D conversion low-order register (Address 003516) 10 Resistor ladder
VREF AVSS
Fig. 33 Block diagram of A-D converter
31
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
WATCHDOG TIMER
The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop (for example, because of a software run-away). The watchdog timer consists of an 8-bit watchdog timer L and an 8-bit watchdog timer H.
Standard Operation of Watchdog Timer
When any data is not written into the watchdog timer control register (address 003916) after reset, the watchdog timer is in the stop state. The watchdog timer starts to count down by writing an optional value into the watchdog timer control register (address 003916) and an internal reset occurs at an underflow of the watchdog timer H. Accordingly, programming is usually performed so that writing to the watchdog timer control register (address 003916) may be started before an underflow. When the watchdog timer control register (address 003916) is read, the values of the high-order 6 bits of the watchdog timer H, STP instruction disable bit, and watchdog timer H count source selection bit are read. qInitial value of watchdog timer At reset or writing to the watchdog timer control register (address 003916), each watchdog timer H and L is set to "FF16."
qWatchdog timer H count source selection bit operation Bit 7 of the watchdog timer control register (address 003916) permits selecting a watchdog timer H count source. When this bit is set to "0", the count source becomes the underflow signal of watchdog timer L. The detection time is set to 131.072 ms at f(XIN) = 8 MHz frequency and 32.768 s at f(XCIN) = 32 kHz frequency. When this bit is set to "1", the count source becomes the signal divided by 16 for f(XIN) (or f(XCIN)). The detection time in this case is set to 512 s at f(XIN) = 8 MHz frequency and 128 ms at f(XCIN) = 32 kHz frequency. This bit is cleared to "0" after reset. qOperation of STP instruction disable bit Bit 6 of the watchdog timer control register (address 003916) permits disabling the STP instruction when the watchdog timer is in operation. When this bit is "0", the STP instruction is enabled. When this bit is "1", the STP instruction is disabled, once the STP instruction is executed, an internal reset occurs. When this bit is set to "1", it cannot be rewritten to "0" by program. This bit is cleared to "0" after reset.
XCIN "10" Main clock division ratio selection bits (Note) XIN
"FF16" is set when watchdog timer control register is written to. "0" Watchdog timer L (8) 1/16 "00" "01" "1" Watchdog timer H (8) Watchdog timer H count source selection bit
Data bus "FF16" is set when watchdog timer control register is written to.
STP instruction disable bit STP instruction Reset circuit Internal reset
RESET
Note: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.
Fig. 34 Block diagram of Watchdog timer
b7
b0
Watchdog timer control register (WDTCON : address 003916)
Watchdog timer H (for read-out of high-order 6 bit) STP instruction disable bit 0: STP instruction enabled 1: STP instruction disabled Watchdog timer H count source selection bit 0: Watchdog timer L underflow 1: f(XIN)/16 or f(XCIN)/16
Fig. 35 Structure of Watchdog timer control register
32
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RESET CIRCUIT
To reset the microcomputer, RESET pin must be held at an "L" level for 20 cycles or more of XIN. Then the RESET pin is returned to an "H" level (the power source voltage must be between 2.7 V and 5.5 V, and the oscillation must be stable), reset is released. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.54 V for VCC of 2.7 V.
Poweron Power source voltage 0V Reset input voltage 0V (Note)
RESET
VCC
0.2VCC
Note : Reset release voltage; Vcc = 2.7 V
RESET
VCC Power source voltage detection circuit
Fig. 36 Reset circuit example
XIN
RESET
RESETOUT
Address
?
?
?
?
FFFC
FFFD
ADH,L
Reset address from the vector table.
Data
?
?
?
?
ADL
ADH
SYNC
XIN: 8 to 13 clock cycles Notes 1: The frequency relation of f(XIN) and f() is f(XIN) = 2 * f(). 2: The question marks (?) indicate an undefined state that depends on the previous state. 3: All signals except XIN and RESET are internals.
Fig. 37 Reset sequence
33
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Address Register contents (1) (2) (3) (4) (5) (6) (7) (8) (9) Port P0 (P0) Port P0 direction register (P0D) Port P1 (P1) Port P1 direction register (P1D) Port P2 (P2) Port P2 direction register (P2D) Port P3 (P3) Port P3 direction register (P3D) Port P4 (P4) 000016 000116 000216 000316 000416 000516 000616 000716 000816 000916 001516 0016 0016 0016 0016 0016 0016 0016 0016 0016 0016 0016 (34) MISRG (35) Watchdog timer control register (WDTCON) (36) Interrupt edge selection register (INTEDGE) (37) CPU mode register (CPUM) (38) Interrupt request register 1 (IREQ1) (39) Interrupt request register 2 (IREQ2) (40) Interrupt control register 1 (ICON1) (41) Interrupt control register 2 (ICON2) (42) Processor status register (43) Program counter
Address Register contents 003816 0016
003916 0 0 1 1 1 1 1 1 003A16 0016
003B16 0 1 0 0 1 0 0 0 003C16 003D16 003E16 003F16 (PS) (PCH) (PCL) 0016 0016 0016 0016 XXXXX1XX
FFFD16 contents FFFC16 contents
(10) Port P4 direction register (P4D) (11) Serial I/O2 control register 1 (SIO2CON1) (12) Serial I/O2 control register 2 (SIO2CON2) (13) Serial I/O2 register (SIO2) (14) Transmit/Receive buffer register (TB/RB) (15) Serial I/O1 status register (SIOSTS) (16) Serial I/O1 control register (SIOCON) (17) UART control register (UARTCON) (18) Baud rate generator (BRG) (19) PWM control register (PWMCON) (20) PWM prescaler (PREPWM) (21) PWM register (PWM) (22) Prescaler 12 (PRE12) (23) Timer 1 (T1) (24) Timer 2 (T2) (25) Timer XY mode register (TM) (26) Prescaler X (PREX) (27) Timer X (TX) (28) Prescaler Y (PREY) (29) Timer Y (TY) (30) Timer count source selection register (TCSS) (31) A-D control register (ADCON) (32) A-D conversion low-order register (ADL) (33) A-D conversion high-order register (ADH)
001616 0 0 0 0 0 1 1 1 001716 X X X X X X X X 001816 X X X X X X X X 001916 1 0 0 0 0 0 0 0 001A16 0016
001B16 1 1 1 0 0 0 0 0 001C16 X X X X X X X X 001D16 0016
001E16 X X X X X X X X 001F16 X X X X X X X X 002016 002116 002216 002316 002416 002516 002616 002716 002816 FF16 0116 0016 0016 FF16 FF16 FF16 FF16 0016
003416 0 0 0 1 0 0 0 0 003516 X X X X X X X X 003616 0 0 0 0 0 0 X X
Note : X : Not fixed Since the initial values for other than above mentioned registers and RAM contents are indefinite at reset, they must be set.
Fig. 38 Internal status at reset
34
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
CLOCK GENERATING CIRCUIT
The 3850 group (spec. H) has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer 's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT. Immediately after power on, only the XIN oscillation circuit starts oscillating, and XCIN and XCOUT pins function as I/O ports.
(2) Wait mode
If the WIT instruction is executed, the internal clock stops at an "H" level, but the oscillator does not stop. The internal clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted. To ensure that the interrupts will be received to release the STP or WIT state, their interrupt enable bits must be set to "1" before executing of the STP or WIT instruction. When releasing the STP state, the prescaler 12 and timer 1 will start counting the clock XIN divided by 16. Accordingly, set the timer 1 interrupt enable bit to "0" before executing the STP instruction.
Frequency Control (1) Middle-speed mode
The internal clock is the frequency of XIN divided by 8. After reset, this mode is selected.
sNote (2) High-speed mode
The internal clock is half the frequency of XIN. When using the oscillation stabilizing time set after STP instruction released bit set to "1", evaluate time to stabilize oscillation of the used oscillator and set the value to the timer 1 and prescaler 12.
(3) Low-speed mode
The internal clock is half the frequency of XCIN.
sNote
If you switch the mode between middle/high-speed and lowspeed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub-clock to stabilize, especially immediately after power on and at returning from the stop mode. When switching the mode between middle/high-speed and low-speed, set the frequency on condition that f(XIN) > 3*f(XCIN).
XCIN Rf
XCOUT Rd CCOUT
XIN
XOUT
CCIN
CIN
COUT
(4) Low power dissipation mode
The low power consumption operation can be realized by stopping the main clock XIN in low-speed mode. To stop the main clock, set bit 5 of the CPU mode register to "1." When the main clock XIN is restarted (by setting the main clock stop bit to "0"), set sufficient time for oscillation to stabilize. The sub-clock XCIN-XCOUT oscillating circuit can not directly input clocks that are generated externally. Accordingly, make sure to cause an external resonator to oscillate. Fig. 39 Ceramic resonator circuit
XCIN
XCOUT Rd CCOUT
XIN
XOUT Open
Oscillation Control (1) Stop mode
If the STP instruction is executed, the internal clock stops at an "H" level, and XIN and XCIN oscillation stops. When the oscillation stabilizing time set after STP instruction released bit is "0," the prescaler 12 is set to "FF16" and timer 1 is set to "0116." When the oscillation stabilizing time set after STP instruction released bit is "1," set the sufficient time for oscillation of used oscillator to stabilize since nothing is set to the prescaler 12 and timer 1. Either XIN or XCIN divided by 16 is input to the prescaler 12 as count source. Oscillator restarts when an external interrupt is received, but the internal clock is not supplied to the CPU (remains at "H") until timer 1 underflows. The internal clock is supplied for the first time, when timer 1 underflows. This ensures time for the clock oscillation using the ceramic resonators to be stabilized. When the oscillator is restarted by reset, apply "L" level to the RESET pin until the oscillation is stable since a wait time will not be generated.
Rf CCIN
External oscillation circuit Vcc Vss
Fig. 40 External clock input circuit
35
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
[MISRG (MISRG)] 003816
MISRG consists of three control bits (bits 1 to 3) for middle-speed mode automatic switch and one control bit (bit 0) for oscillation stabilizing time set after STP instruction released. By setting the middle-speed mode automatic switch start bit to "1" while operating in the low-speed mode and setting the middlespeed mode automatic switch set bit to "1", XIN oscillation automatically starts and the mode is automatically switched to the middle-speed mode.
b7
b0
MISRG (MISRG : address 003816) Oscillation stabilizing time set after STP instruction released bit 0: Automatically set "0116" to Timer 1, "FF16" to Prescaler 12 1: Automatically set nothing Middle-speed mode automatic switch set bit 0: Not set automatically 1: Automatic switching enable Middle-speed mode automatic switch wait time set bit 0: 4.5 to 5.5 machine cycles 1: 6.5 to 7.5 machine cycles Middle-speed mode automatic switch start bit (Depending on program) 0: Invalid 1: Automatic switch start Not used (return "0" when read) Note: W h e n th e mo d e i s a u t o m a ti c a lly s wi tc h e d fr o m t h e lo w- s p e e d m o d e t o the middle-speed mode, the value of CPU mode register (address 003B16) changes.
Fig. 41 Structure of MISRG
XCIN
XCOUT
"1"
"0"
Port XC switch bit
XIN
XOUT
Main clock division ratio selection bits (Note 1) Low-speed mode
1/2
High-speed or middle-speed mode
1/4
1/2
Prescaler 12 FF16
Timer 1 0116
Reset or STP instruction (Note 2)
Main clock division ratio selection bits (Note 1) Middle-speed mode High-speed or low-speed mode Main clock stop bit
Timing (internal clock)
Q
S R
STP instruction WIT instruction
SQ R
QS R
STP instruction
Reset Interrupt disable flag l Interrupt request
Notes 1: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register. When low-speed mode is selected, set port Xc switch bit (b4) to "1". 2: When bit 0 of MISRG = "0"
Fig. 42 System clock generating circuit block diagram (Single-chip mode)
36
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Reset
Middle-speed mode (f() = 1 MHz) CM7 = 0 CM6 = 1 CM5 = 0 (8 MHz oscillating) CM4 = 0 (32 kHz stopped)
CM6 "1" "0"
High-speed mode (f() = 4 MHz) CM7 = 0 CM6 = 0 CM5 = 0 (8 MHz oscillating) CM4 = 0 (32 kHz stopped)
" "0 4 M " C" "0 "1 M6 C " "1
C "0 M4 CM " "1 6 " "1 " "0 "
Middle-speed mode (f() = 1 MHz) CM7 = 0 CM6 = 1 CM5 = 0 (8 MHz oscillating) CM4 = 1 (32 kHz oscillating)
CM4 "1" "0"
CM6 "1" "0"
CM7 = 0 CM6 = 0 CM5 = 0 (8 MHz oscillating) CM4 = 1 (32 kHz oscillating)
Low-speed mode (f()=16 kHz) CM7 = 1 CM6 = 0 CM5 = 0 (8 MHz oscillating) CM4 = 1 (32 kHz oscillating)
CM7 "1" "0"
C "0 M7 CM " "1 6 "1 " " "0 "
CM4 "1" "0"
High-speed mode (f() = 4 MHz)
b7
b4 CPU mode register (CPUM : address 003B16)
CM4 : Port Xc switch bit 0 : I/O port function (stop oscillating) 1 : XCIN-XCOUT oscillating function CM5 : Main clock (XIN- XOUT) stop bit 0 : Operating 1 : Stopped CM7, CM6: Main clock division ratio selection bit b7 b6 0 0 : = f(XIN)/2 ( High-speed mode) 0 1 : = f(XIN)/8 (Middle-speed mode) 1 0 : = f(XCIN)/2 (Low-speed mode) 1 1 : Not available
Low-speed mode (f()=16 kHz) CM7 = 1 CM6 = 0 CM5 = 1 (8 MHz stopped) CM4 = 1 (32 kHz oscillating)
Notes 1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the modes directly without an allow.) 2 : The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode is ended. 3 : Timer operates in the wait mode. 4 : When bit 0 of MISRG is "0" and the stop mode is ended, a delay of approximately 1 ms occurs by connecting timer 1 in middle/high-speed mode. 5 : When bit 0 of MISRG is "0" and the stop mode is ended, the following is performed. (1) After the clock is restarted, a delay of approximately 256 ms occurs in low-speed mode if Timer 12 count source selection bit is "0". (2) After the clock is restarted, a delay of approximately 16 ms occurs in low-speed mode if Timer 12 count source selection bit is "1". 6 : Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle/high-speed mode. 7 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. indicates the internal clock.
Fig. 43 State transitions of system clock
CM5 "1" "0"
37
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FLASH MEMORY VERSION
Summary
Table 9 shows the summary of the M38507F8 (flash memory version). Table 9 Summary of M38507F8 (flash memory version)
Item Power source voltage Program/Erase VPP voltage Flash memory mode User ROM area Erase block division Boot ROM area Program method Erase method Program/Erase control method Number of commands Number of program/Erase times ROM code protection 1 block (4 Kbytes) (Note 3) Byte program Batch erasing Vcc = 2.7-5.5 V (Note 1) Vcc = 2.7-3.6 V (Note 2) 4.5-5.5 V, f(XIN) = 8 MHz
Specification
3 modes (Parallel I/O mode, Standard serial I/O mode, CPU rewrite mode) 1 block (32 Kbytes)
Program/Erase control by software command 6 commands 100 times Available in parallel I/O mode, and standard serial I/O mode
Notes 1: The power source voltage must be Vcc = 4.5-5.5 V at program and erase operation. 2: The power source voltage can be Vcc = 3.0-3.6 V also at program and erase operation. 3: The Boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. This Boot ROM area can be rewritten in only parallel I/O mode.
38
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Flash Memory Mode
The M38507F8 (flash memory version) has an internal new DINOR (DIvided bit line NOR) flash memory that can be rewritten with a single power source when VCC is 5 V, and 2 power sources when VCC is 3.3 V. For this flash memory , three flash memory modes are available in which to read, program, and erase: parallel I/O and standard serial I/ O modes in which the flash memory can be manipulated using a programmer and a CPU rewrite mode in which the flash memory can be manipulated by the Central Processing Unit (CPU). Each mode is detailed in the pages to follow.
The flash memory of the M38507F8 is divided into User ROM area and Boot ROM area as shown in Figure 44. In addition to the ordinary user ROM area to store a microcomputer operation control program, the flash memory has a Boot ROM area that is used to store a program to control rewriting in CPU rewrite and standard serial I/O modes. This Boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. However, the user can write a rewrite control program in this area that suits the user's application system. This Boot ROM area can be rewritten in only parallel I/O mode.
Parallel I/O mode 800016 Block 1 : 32 kbyte FFFF16 User ROM area BSEL = 0 CPU rewrite mode, standard serial I/O mode 800016 Block 1 : 32 kbyte
Product name M38507F8 Flash memory start address 800016
F00016 4 kbyte FFFF16 Boot ROM area BSEL = 1
F00016 4 kbyte FFFF16 Boot ROM area User area / Boot area selection bit = 1
FFFF16 User ROM area User area / Boot area selection bit = 0
Notes 1: The Boot ROM area can be rewritten in only parallel input/output mode. (Access to any other areas is inhibited.) 2: To specify a block, use the maximum address in the block.
Fig. 44 Block diagram of flash memory version
39
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
CPU Rewrite Mode
In CPU rewrite mode, the on-chip flash memory can be operated on (read, program, or erase) under control of the Central Processing Unit (CPU). In CPU rewrite mode, only the user ROM area shown in Figure 44 can be rewritten; the Boot ROM area cannot be rewritten. Make sure the program and block erase commands are issued for only the user ROM area and each block area. The control program for CPU rewrite mode can be stored in either user ROM or Boot ROM area. In the CPU rewrite mode, because the flash memory cannot be read from the CPU, the rewrite control program must be transferred to internal RAM area before it can be executed.
Bit 2 is the CPU rewrite mode entry flag. This bit can be read to check whether the CPU rewrite mode has been entered or not. Bit 3 is the flash memory reset bit used to reset the control circuit of the internal flash memory. This bit is used when exiting CPU rewrite mode and when flash memory access has failed. When the CPU rewrite mode select bit is "1", writing "1" for this bit resets the control circuit. To release the reset, it is necessary to set this bit to "0". Bit 4 is the User area/Boot area selection bit. When this bit is set to "1", Boot ROM area is accessed, and CPU rewrite mode in Boot ROM area is available. In boot mode, this bit is set "1" automatically. Operation of this bit must be in RAM area. Figure 46 shows a flowchart for setting/releasing the CPU rewrite mode.
Microcomputer Mode and Boot Mode
The control program for CPU rewrite mode must be written into the user ROM or Boot ROM area in parallel I/O mode beforehand. (If the control program is written into the Boot ROM area, the standard serial I/O mode becomes unusable.) See Figure 44 for details about the Boot ROM area. Normal microcomputer mode is entered when the microcomputer is reset with pulling CNVSS pin low. In this case, the CPU starts operating using the control program in the user ROM area. When the microcomputer is reset by pulling the P41/INT0 pin high, the CNVSS pin high, the CPU starts operating using the control program in the Boot ROM area (program start address is FFFC16, FFFD16 fixation). This mode is called the "boot" mode.
Precautions on CPU Rewrite Mode
Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.
(1) Operation speed
During CPU rewrite mode, set the internal clock frequency 4MHz or less using the main clock division ratio selection bits (bit 6, 7 at 003B16).
(2) Instructions inhibited against use
The instructions which refer to the internal data of the flash memory cannot be used during CPU rewrite mode .
(3) Interrupts inhibited against use
The interrupts cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory.
(4) Watchdog timer
Block Address
Block addresses refer to the maximum address of each block. These addresses are used in the block erase command. In case of the M38507F8, it has only one block.
In case of the watchdog timer has been running already, the internal reset generated by watchdog timer underflow does not happen, because of watchdog timer is always clearing during program or erase operation.
(5) Reset
Outline Performance (CPU Rewrite Mode)
In the CPU rewrite mode, the CPU erases, programs and reads the internal flash memory as instructed by software commands. This rewrite control program must be transferred to internal RAM before it can be executed. The CPU rewrite mode is accessed by applying 5V 10% to the CNVSS pin and writing "1" for the CPU rewrite mode select bit (bit 1 in address 0FFE16). Software commands are accepted once the mode is accessed. Use software commands to control program and erase operations. Whether a program or erase operation has terminated normally or in error can be verified by reading the status register. Figure 45 shows the flash memory control register. _____ Bit 0 is the RY/BY status flag used exclusively to read the operating status of the flash memory. During programming and erase operations, it is "0". Otherwise, it is "1". Bit 1 is the CPU rewrite mode select bit. When this bit is set to "1" and 5V 10% are applied to the CNVSS pin, the M38507F8 accesses the CPU rewrite mode. Software commands are accepted once the mode is accessed. In CPU rewrite mode, the CPU becomes unable to access the internal flash memory directly. Therefore, use the control program in RAM for write to bit 1. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. The bit can be set to "0" by only writing a "0".
Reset is always valid. In case of CNVSS = H when reset is released, boot mode is active. So the program starts from the address contained in address FFFC16 and FFFD16 in boot ROM area.
40
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Flash memory control register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
FM CR Bit symbol
Address
0FFE16
When reset
XXX00001
Bit name RY/BY status flag CPU rewrite mode select bit (Note 1)
Function 0: Busy (being written or erased) 1: Ready 0: Normal mode (Software commands invalid) 1: CPU rewrite mode (Software commands acceptable) 0: Normal mode (Software commands invalid) 1: CPU rewrite mode (Software commands acceptable) 0: Normal operation 1: Reset 0: User ROM area 1: Boot ROM area
RW RW
FMCR0 FMCR1
FMCR2
CPU rewrite mode entry flag
FMCR3 FMCR4
Flash memory reset bit (Note 2) User area / Boot area selection bit
Nothing is assigned. When write, set "0". When read, values are indeterminate. Notes 1: For this bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. 2: Effective only when the CPU rewrite mode select bit = 1. Set this bit to "0" subsequently after setting it to "1" (reset).
Fig. 45 Flash memory control registers
Program in ROM
Start
Program in RAM
*1
Single-chip mode, or boot mode
Set CPU rewrite mode select bit to "1" (by writing "0" and then "1" in succession)
Set CPU mode register (Note 1)
Check the CPU rewrite mode entry flag
Transfer CPU rewrite mode control program to internal RAM
Using software command execute erase, program, or other operation
Jump to transferred control program in RAM (Subsequent operations are executed by control program in this RAM)
Execute read array command or reset flash memory by setting flash memory reset bit (by writing "1" and then "0" in succession) (Note 2)
*1 Write "0" to CPU rewrite mode select bit
End
Notes 1: Set bit 6, 7 (Main clock division ratio selection bits ) at CPU mode register (003B16). 2: Before exiting the CPU rewrite mode after completing erase or program operation, always be sure to execute a read array command or reset the flash memory.
Fig. 46 CPU rewrite mode set/reset flowchart
41
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Software Commands
Table 10 lists the software commands. After setting the CPU rewrite mode select bit to "1", write a software command to specify an erase or program operation. The content of each software command is explained below.
Read Status Register Command (7016)
When the command code "7016" is written in the first bus cycle, the content of the status register is read out at the data bus (D0-D7) by a read in the second bus cycle. The status register is explained in the next section.
Read Array Command (FF16)
The read array mode is entered by writing the command code "FF16" in the first bus cycle. When an address to be read is input in one of the bus cycles that follow, the content of the specified address is read out at the data bus (D0-D7). The read array mode is retained intact until another command is written. And after power on and after recover from deep power down mode, this mode is selected also.
Clear Status Register Command (5016)
This command is used to clear the bits SR1,SR4 and SR5 of the status register after they have been set. These bits indicate that operation has ended in an error. To use this command, write the command code "5016" in the first bus cycle.
Table 10 List of software commands (CPU rewrite mode)
First bus cycle Command Read array Read status register Clear status register Program Erase all block Block erase Cycle number 1 2 1 2 2 2 Mode Write Write Write Write Write Write Address X
(Note 4)
Second bus cycle Mode Address Data (D0 to D7)
Data (D0 to D7) FF16 7016 5016 4016 2016 2016
X X X X X
Read
X
SRD (Note 1)
Write Write Write
WA (Note 2) X BA
(Note 3)
WD (Note 2) 2016 D016
Notes 1: SRD = Status Register Data 2: WA = Write Address, WD = Write Data 3: BA = Block Address (Enter the maximum address of each block.) 4: X denotes a given address in the user ROM area .
42
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Program Command (4016)
Program operation starts when the command code "4016" is written in the first bus cycle. Then, if the address and data to program are written in the 2nd bus cycle, program operation (data programming and verification) will start. Whether the write operation is completed can be confirmed by read_____ ing the status register or the RY/BY status flag. When the program starts, the read status register mode is accessed automatically and the content of the status register is read into the data bus (D0-D7). The status register bit 7 (SR7) is set to "0" at the same time the write operation starts and is returned to "1" upon completion of the write operation. In this case, the read status register mode remains active until the read array command (FF16) is written. ____ The RY/BY status flag is "0" during write operation and "1" when the write operation is completed as is the status register bit 7. At program end, program results can be checked by reading the status register.
Block Erase Command (2016/D016)
By writing the command code "2016" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system initiates a block erase (erase and erase verify) operation. Whether the block erase operation is completed can be confirmed ____ by reading the status register or the RY/BY status flag. At the same time the block erase operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to "0" at the same time the block erase operation starts and is returned to "1" upon completion of the block erase operation. In this case, the read status register mode remains active until the read array command (FF16) is written. ____ The RY/BY status flag is "0" during block erase operation and "1" when the block erase operation is completed as is the status register bit 7. After the block erase operation is completed, the status register can be read out to know the result of the block erase operation. For details, refer to the section where the status register is detailed.
Erase All Blocks Command (2016/2016)
By writing the command code "2016" in the first bus cycle and the confirmation command code "2016" in the second bus cycle that follows, the system starts erase all blocks( erase and erase verify). Whether the erase all blocks command is terminated can be con____ firmed by reading the status register or the RY/BY status flag. When the erase all blocks operation starts, the read status register mode is accessed automatically and the content of the status register can be read out. The status register bit 7 (SR7) is set to "0" at the same time the erase operation starts and is returned to "1" upon completion of the erase operation. In this case, the read status register mode remains active until the read array command (FF16) is written. ____ The RY/BY status flag is "0" during erase operation and "1" when the erase operation is completed as is the status register bit 7. At erase all blocks end, erase results can be checked by reading the status register. For details, refer to the section where the status register is detailed.
Start
Write 2016
Write
2016/D016 Block address
2016:Erase all blocks D016:Block erase
Status register read
SR7=1? or RY/BY=1?
NO
YES SR5=0? YES NO Erase error
Start Write 4016
Erase completed
Write Write address Write data Status register read
SR7=1? or RY/BY=1? YES
Fig. 48 Erase flowchart
NO
NO SR4=0? YES Program completed
Program error
Fig. 47 Program flowchart
43
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Status Register
The status register shows the operating state of the flash memory and whether erase operations and programs ended successfully or in error. It can be read in the following ways. (1) By reading an arbitrary address from the user ROM area after writing the read status register command (7016) (2) By reading an arbitrary address from the user ROM area in the period from when the program starts or erase operation starts to when the read array command (FF16) is input Table 11 shows the status register. Also, the status register can be cleared in the following way. (1) By writing the clear status register command (5016) (2) In the deep power down mode (3) In the power supply off state After a reset, the status register is set to "8016". Each bit in this register is explained below.
Sequencer status (SR7)
After power-on, and after recover from deep power down mode, the sequencer status is set to "1"(ready). The sequencer status indicates the operating status of the device. This status bit is set to "0" (busy) during write or erase operation and is set to "1" upon completion of these operations.
Erase status (SR5)
The erase status informs the operating status of erase operation to the CPU. When an erase error occurs, it is set to "1". The erase status is reset to "0" when cleared.
Program status (SR4)
The program status informs the operating status of write operation to the CPU. When a write error occurs, it is set to "1". The program status is reset to "0" when cleared. If "1" is written for any of the SR5 or SR4 bits, the program, erase all blocks, and block erase commands are not accepted. Before executing these commands, execute the clear status register command (5016) and clear the status register. Also, any commands are not correct, both SR5 and SR4 are set to "1".
Table 11 Definition of each bit in status register
Each bit of SRD0 bits SR7 (bit7) SR6 (bit6) SR5 (bit5) SR4 (bit4) SR3 (bit3) SR2 (bit2) SR1 (bit1) SR0 (bit0)
Status name Sequencer status Reserved Erase status Program status Reserved Reserved Reserved Reserved
Definition "1"
Ready Terminated in error Terminated in error -
"0"
Busy Terminated normally Terminated normally -
44
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Full Status Check
By performing full status check, it is possible to know the execution results of erase and program operations. Figure 49 shows a full sta-
tus check flowchart and the action to be taken when each error occurs.
Read status register
SR4=1 and SR5 =1 ? NO SR5=0? YES SR4=0? YES
YES
Command sequence error
Execute the clear status register command (5016) to clear the status register. Try performing the operation one more time after confirming that the command is entered correctly. Should a block erase error occur, the block in error cannot be used.
NO
Block erase error
NO
Program error
Should a program error occur, the block in error cannot be used.
End (block erase, program)
Note: When one of SR5 to SR4 is set to "1" , none of the program, erase all blocks, and block erase commands is accepted. Execute the clear status register command (5016) before executing these commands.
Fig. 49 Full status check flowchart and remedial procedure for errors
45
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Functions To Inhibit Rewriting Flash Memory Version
To prevent the contents of the flash memory version from being read out or rewritten easily, the device incorporates a ROM code protect function for use in parallel I/O mode and an ID code check function for use in standard serial I/O mode.
ROM code protect function
The ROM code protect function is the function inhibit reading out or modifying the contents of the flash memory version by using the ROM code protect control address (FFDB16) during parallel I/O mode. Figure 50 shows the ROM code protect control address (FFDB16). (This address exists in the user ROM area.)
If one of the pair of ROM code protect bits is set to "0", ROM code protect is turned on, so that the contents of the flash memory version are protected against readout and modification. ROM code protect is implemented in two levels. If level 2 is selected, the flash memory is protected even against readout by a shipment inspection LSI tester, etc. When an attempt is made to select both level 1 and level 2, level 2 is selected by default. If both of the two ROM code protect reset bits are set to "00", ROM code protect is turned off, so that the contents of the flash memory version can be read out or modified. Once ROM code protect is turned on, the contents of the ROM code protect reset bits cannot be modified in parallel I/O mode. Use the serial I/O or some other mode to rewrite the contents of the ROM code protect reset bits.
ROM code protect control address
b7 b6 b5 b4 b3 b2 b1 b0
11
Symbol ROMCP
Address FFDB16
When reset FF16
Bit symbol
Bit name
Function Always set this bit to "1"
b3 b2
Reserved bit
ROMCP2
ROM code protect level 2 set bit (Note 1, 2)
00: Protect enabled 01: Protect enabled 10: Protect enabled 11: Protect disabled
b5 b4
ROMCR
ROM code protect reset bit (Note 3)
00: Protect removed 01: Protect set bit effective 10: Protect set bit effective 11: Protect set bit effective
b7 b6
ROMCP1
ROM code protect level 1 set bit (Note 1)
00: Protect enabled 01: Protect enabled 10: Protect enabled 11: Protect disabled
Notes 1: When ROM code protect is turned on, the on-chip flash memory is protected against readout or modification in parallel input/output mode. 2: When ROM code protect level 2 is turned on, ROM code readout by a shipment inspection LSI tester, etc. also is inhibited. 3: The ROM code protect reset bits can be used to turn off ROM code protect level 1 and ROM code protect level 2. However, since these bits cannot be changed in parallel input/output mode, they need to be rewritten in serial input/output mode or some other mode.
Fig. 50 ROM code protect control address
46
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ID Code Check Function
Use this function in standard serial I/O mode. When the contents of the flash memory are not blank, the ID code sent from the peripheral unit is compared with the ID code written in the flash memory to see if they match. If the ID codes do not match, the commands sent from the peripheral unit are not accepted. The ID code consists of 8-bit data, the areas of which are FFD416 to FFDA16. Write a program which has had the ID code preset at these addresses to the flash memory.
Address FFD416 FFD516 FFD616 FFD716 FFD816 FFD916 FFDA16 FFDB16 ID1 ID2 ID3 ID4 ID5 ID6 ID7 ROM cord Protect control Interrupt vector area
Fig. 51 ID code store addresses
47
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Parallel I/O Mode
The parallel I/O mode is entered by making connections shown in Figure 52 and then turning the Vcc power supply on.
Bus Operation Modes
Read
The Read mode is entered by pulling the OE pin low when the CE _____ _____ pin is low and the WE and RP pins are high. There are two read modes: array, and status register, which are selected by software command input. In read mode, the data corresponding to each software command entered is output from the data I/O pins D0-D7. The read array mode is automatically selected when the device is powered on or after it exits deep power down mode.
_____ _____
Address
The user ROM is only one block as shown in Figure 44. The block address referred to in this data sheet is the maximum address value of each block.
User ROM and Boot ROM Areas
In parallel I/O mode, the user ROM and boot ROM areas shown in Figure 44 can be rewritten. The BSEL pin is used to choose between these two areas. The user ROM area is selected by pulling the BSEL input low; the boot ROM area is selected by driving the BSEL input high. Both areas of flash memory can be operated on in the same way. Program and block erase operations can be performed in the user ROM area. The user ROM area and its block is shown in Figure 44. The user ROM area is 32 Kbytes in size. In parallel I/O mode, it is located at addresses 800016 through FFFF16. The boot ROM area is 4 Kbytes in size. In parallel I/O mode, it is located at addresses F00016 through FFFF16. Make sure program and block erase operations are always performed within this address range. (Access to any location outside this address range is prohibited.) In the Boot ROM area, an erase block operation is applied to only one 4 Kbyte block. The boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the Mitsubishi factory. Therefore, using the device in standard serial input/output mode, you do not need to write to the boot ROM area.
Output Disable
The output disable mode is entered by pulling the CE pin low and the _____ _____ _____ WE, OE, and RP pins high. Also, the data I/O pins are placed in the high-impedance state.
_____
Standby
The standby mode is entered by driving the CE pin high when the RP pin is high. Also, the data I/O pins are placed in the high-impedance _____ state. However, if the CE pin is set high during erase or program operation, the internal control circuit does not halt immediately and normal power consumption is required until the operation under way is completed.
_____ _____
Write
The write mode is entered by pulling the WE pin low when the CE pin _____ _____ is low and the OE and RP pins are high. In this mode, the device accepts the software commands or write data entered from the data I/O pins. A program, erase, or some other operation is initiated depending on the content of the software command entered here. The input data such as address and software command is latched at the _____ _____ rising edge of WE or CE whichever occurs earlier.
_____ _____
Functional Outline (Parallel I/O Mode)
In parallel I/O mode, bus operation modes--Read, Output Disable, Standby, Write, and Deep Power Down--are selected by the status _____ _____ _____ _____ of the CE, OE, WE, and RP input pins. The contents of erase, program, and other operations are selected by writing a software command. The data, status register, etc. in memory can only be read out by a read after software command input. Program and erase operations are controlled using software commands. The following explains about bus operation modes, software commands, and status register.
Deep Power Down
The deep power down is entered by pulling the RP pin low. Also, the data I/O pins are placed in the high-impedance state. When the device is freed from deep power down mode, the read array mode is selected and the content of the status register is set to "8016." If the _____ RP pin is pulled low during erase or program operation, the operation under way is canceled and the data in the relevant block becomes invalid.
_____
Table 12 Relationship between control signals and bus operation modes
Mode Read Output disabled Stand by Write Deep power down
Note : X can be VIL or VIH.
Pin name Array Status register
_____
_____
______
_____
CE VIL VIL VIL VIH VIL VIL VIL X
OE VIL VIL VIH X VIH VIH VIH X
WE VIH VIH VIH X VIL VIL VIL X
RP VIH VIH VIH VIH VIH VIH VIH VIL
D0 to D7 Data output Status register data output High impedance High impedance Command/data input Command input Command input High impedance
Program Erase Other
48
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 13 Description of Pin Function (Flash Memory Parallel I/O Mode)
Pin name VCC,VSS CNVSS RESET XIN XOUT AVSS VREF P00 to P07 P10 to P17 P20 to P27 P30 P31 P32 P33 P34 P40 P41 P42 to P44
Signal name Power supply input CNVSS Reset input Clock input Clock output Analog power supply input Reference voltage input Data I/O D0 to D7 Address input A8 to A15 Address input A0 to A7 BSEL input RP input WE input CE input OE input RY/BY output Input P41 Input P4
I/O I I I I O I I I/O I I I I I I I O I I
Function Apply 5.0 0.5 V to the Vcc pin and 0 V to the Vss pin. Connect this pin to Vcc. Reset input pin. When reset is held low, more than 20 cycles of clock are required at the XIN pin. Connect a ceramic or crystal resonator between the XIN and XOUT pins. When entering an externally drived clock, enter it from XIN and leave XOUT open. Connect AVss to Vss. Input AD reference voltage or keep open. These are data D0-D7 input/output pins. These are address A8-A15 input pins. These are address A0-A7 input pins. This is a BSEL input pin. This is a RP input pin. This is a WE input pin. This is a CE input pin. This is a OE input pin. This is a RY/BY output pin. Enter low signals to this pin. Input "H" or "L" or keep open.
49
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
VCC VSS VCC VREF AVSS P44/INT3/PWM P43/INT2/SCMP2 P42/INT1 P41/INT0 P40/CNTR1 P27/CNTR0/SRDY1 P26/SCLK1 P25/SCL2/TxD P24/SDA2/RxD P23/SCL1 P22/SDA1 CNVSS P21/XCIN P20/XCOUT RESET XIN XOUT VSS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
RY/BY A7 A6 A5 A4 A3 A2 A1 A0
P30/AN0 P31/AN1 P32/AN2 P33/AN3 P34/AN4 P00/SIN2 P01/SOUT2 P02/SCLK2 P03/SRDY2 P04 P05 P06 P07 P10/(LED0) P11/(LED1) P12/(LED2) P13/(LED3) P14/(LED4) P15/(LED5) P16/(LED6) P17/(LED7)
BSEL RP WE CE OE D0 D1 D2 D3 D4 D5 D6 D7 A8 A9 A10 A11 A12 A13 A14 A15
M38507F8SP/FP
Mode setup method
Signal Value
Connect oscillator circuit
CNVSS P41/INT0 RESET
VCC VSS VSS
Fig. 52 Pin connection diagram in parallel I/O mode
50
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Software Commands
Table 14 lists the software commands. By entering a software command from the data I/O pins (D0-D7) in Write mode, specify the content of the operation, such as erase or program operation, to be performed. The following explains the content of each software command.
Read Status Register Command (7016)
When the command code "7016" is written in the first bus cycle, the content of the status register is output from the data I/O pins (D0-D7) by a read in the second bus cycle. Since the content of the status _____ _____ _____ _____ register is updated at the falling edge of OE or CE, the OE or CE signal must be asserted each time the status is read. The status register is explained in the next section.
Read Array Command (FF16)
The read array mode is entered by writing the command code "FF16" in the first bus cycle. When an address to be read is input in one of the bus cycles that follow, the content of the specified address is output from the data I/O pins (D0-D7). The read array mode is retained intact until another command is written. The read array mode is also selected automatically when the device is powered on and after it exits deep power down mode. Table 14 Software command list (parallel I/O mode)
Clear Status Register Command (5016)
This command is used to clear the bits SR4,SR5 of the status register after they have been set. These bits indicate that operation has ended in an error. To use this command, write the command code "5016" in the first bus cycle.
First bus cycle Command Read array Read status register Clear status register Program All block erase Block erase Cycle number Mode 1 2 1 2 2 2 Write Write Write Write Write Write Address X(Note 4) X X X X X Data
(D0 to D7)
Second bus cycle Mode Read Write Write Write Address X Data
(D0 to D7)
FF16 7016 5016 4016 2016 2016
SRD(Note 1)
WA(Note 2) WD(Note 2) X 2016 BA(Note 3) D016
Notes 1: SRD = Status Register Data 2: WA = Write Address, WD = Write Data 3: BA = Block Address (Enter the maximum address of each block) 4: X denotes a given address in the user ROM area or boot ROM area.
51
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
____
Program Command (4016)
The program operation starts when the command code "4016" is written in the first bus cycle. Then, if the address and data to program are written in the 2nd bus cycle, program operation (data programming and verification) will start. Whether the write operation is completed can be confirmed by read_____ ing the status register or the RY/BY signal status. When the program starts, the read status register mode is accessed automatically and the content of the status register can be read out from the data bus (D0-D7). The status register bit 7 (SR7) is set to "0" at the same time the write operation starts and is returned to "1" upon completion of the write operation. In this case, the read status register mode remains active until the read array command (FF16) is written. ____ The RY/BY pin is "L" during write operation and "H" when the write operation is completed as is the status register bit 7. At program end, program results can be checked by reading the status register.
The RY/BY pin is "L" during erase operation and "H" when the erase operation is completed as is the status register bit 7. At erase all blocks end, erase results can be checked by reading the status register. For details, refer to the section where the status register is detailed.
Block Erase Command (2016/D016)
By writing the command code "2016" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system initiates a block erase (erase and erase verify) operation. Whether the block erase operation is completed can be confirmed ____ by reading the status register or the RY/BY signal. At the same time the block erase operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to "0" at the same time the block erase operation starts and is returned to "1" upon completion of the block erase operation. In this case, the read status register mode remains active until the read array command (FF16) is written. ____ The RY/BY pin is "L" during block erase operation and "H" when the block erase operation is completed as is the status register bit 7. After the block erase operation is completed, the status register can be read out to know the result of the block erase operation. For details, refer to the section where the status register is detailed.
Erase All Blocks Command (2016/2016)
By writing the command code "2016" in the first bus cycle and the confirmation command code "2016" in the second bus cycle that follows, the system starts erase all blocks( erase and erase verify). Whether the erase all blocks command is terminated can be con____ firmed by reading the status register or the RY/BY signal status . When the erase all blocks operation starts, the read status register mode is accessed automatically and the content of the status register can be read out. The status register bit 7 (SR7) is set to "0" at the same time the erase operation starts and is returned to "1" upon completion of the erase operation. In this case, the read status register mode remains active until the read array command (FF16) is written.
Start Write 4016 Write Write address Write data Status register read
SR7=1? or RY/BY=1? YES
Start
Write 2016
Write
2016/D016 Block address
2016:Erase all blocks D016:Block erase
Status register read
NO
SR7=1? or RY/BY=1?
NO
YES
NO SR4=0? YES Program completed
Fig. 53 Page program flowchart
Program error
SR5=0? YES Erase completed
NO
Erase error
Fig. 54 Block erase flowchart
52
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Status Register
The status register indicates status such as whether an erase operation or a program ended successfully or in error. It can be read under the following conditions. (1) In the read array mode when the read status register command (7016) is written and the block address is subsequently read. (2) In the period from when the program write or auto erase starts to when the read array command (FF16) The status register is cleared in the following situations. (1) By writing the clear status register command (5016) (2) In the deep power down mode (3) In the power supply off state Table 15 gives the definition of each status register bit. When power is turned on or returning from the deep power down mode, the status register outputs "8016".
Program Status (SR4)
The program status reports the operating status of the write operation. If a write error occurs, it is set to "1". When the program status is cleared, it is set to "0". If "1" is written for any of the SR5, SR4 bits, the program erase all blocks, block erase, commands are not accepted. Before executing these commands, execute the clear status register command (5016) and clear the status register. Also, any commands are not correct, both SR5 and SR4 are set to "1".
Full Status Check
Results from executed erase and program operations can be known by running a full status check. Figure 55 shows a flowchart of the full status check and explains how to remedy errors which occur.
____
Ready/Busy (RY/BY) pin
____
Sequencer status (SR7)
The sequencer status indicates the operating status of the flash memory. When power is turned on or returning from the deep power down mode, "1" is set for it. This bit is "0" (busy) during the write or erase operations and becomes "1" when these operations ends.
The RY/BY pin is an output pin (N-chanel open drain output) which, like the sequencer status (SR7), indicates the operating status of the flash memory. It is "L" level during auto program or auto erase operations and becomes to the high impedance state (ready state) when ____ these operations end. The RY/BY pin requires an external pull-up.
Erase Status (SR5)
The erase status reports the operating status of the erase operation. If an erase error occurs, it is set to "1". When the erase status is cleared, it is set to "0".
Table 15 Status register
Each bit of SRD0 bits SR7 (D7) SR6 (D6) SR5 (D5) SR4 (D4) SR3 (D3) SR2 (D2) SR1 (D1) SR0 (D0)
Status name Sequencer status Reserved Erase status Program status Reserved Reserved Reserved Reserved
Definition "1"
Ready Ended in error Ended in error -
"0"
Busy Ended successfully Ended successfully -
53
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Read status register
SR4=1 and SR5 =1 ? NO SR5=0? YES SR4=0? YES
YES
Command sequence error
Execute the clear status register command (5016) to clear the status register. Try performing the operation one more time after confirming that the command is entered correctly. Should a block erase error occur, the block in error cannot be used.
NO
Block erase error
NO
Program error
Should a program error occur, the block in error cannot be used.
End (block erase, program)
Note: When one of SR5 to SR4 is set to "1" , none of the program, all blocks erase, or block erase is accepted. Execute the clear status register command (5016) before executing these commands.
Fig. 55 Full status check flowchart and remedial procedure for errors
54
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Standard serial I/O mode
The standard serial I/O mode inputs and outputs the software commands, addresses and data needed to operate (read, program, erase, etc.) the internal flash memory. This I/O is clock synchronized serial. This modes require a purpose-specific peripheral unit. The standard serial I/O mode is different from the parallel I/O mode in that the CPU controls flash memory rewrite (uses the CPU's rewrite mode), rewrite data input and so forth. The standard serial I/O mode is started by connecting "H" to the P41(INT0) pin and "H" to the CNVSS pin (when VCC = 4.5 V to 5.5 V, connect to VCC; when VCC = 2.7 V to 4.5 V, supply 4.5 V to 5.5 V to Vpp from an external source), and releasing the reset operation. (In the ordinary command mode, set CNVss pin to "L" level.) This control program is written in the boot ROM area when the product is shipped from Mitsubishi. Accordingly, make note of the fact that the standard serial I/O mode cannot be used if the boot ROM area is rewritten in the parallel I/O mode. Figure 56 shows the pin connections for the standard serial I/O mode. Serial data I/O uses SI/ O1 data serially in 8-bit units. To use standard serial I/O mode. The operation uses the four SI/O1 __________ pins SCLK, RxD, TxD and SRDY1 (BUSY). The SCLK pin is the transfer clock input pin through which an external transfer clock is input. __________ The TxD pin is for CMOS output. The SRDY1 (BUSY) pin outputs an "L" level when ready for reception and an "H" level when reception starts. In the standard serial I/O mode, only the user ROM area indicated in Figure 44 can be rewritten. The boot ROM cannot. In the standard serial I/O mode, a 7-byte ID code is used. When there is data in the flash memory, commands sent from the peripheral unit (programmer) are not accepted unless the ID code matches.
Overview of standard serial I/O mode
In standard serial I/O mode, software commands, addresses and data are input and output between the MCU and peripheral units (serial programer, etc.) using 4-wire clock-synchronized serial I/O (SI/O1). In reception, software commands, addresses and program data are synchronized with the rise of the transfer clock that is input to the SCLK pin, and are then input to the MCU via the RxD pin. In transmission, the read data and status are synchronized with the fall of the transfer clock, and output from the TxD pin. The TxD pin is for CMOS output. Transfer is in 8-bit units with LSB first. When busy, such as during transmission, reception, erasing or pro__________ gram execution, the SRDY1 (BUSY) pin is "H" level. Accordingly, al__________ ways start the next transfer after the SRDY1 (BUSY) pin is "L" level. Also, data and status registers in memory can be read after inputting software commands. Status, such as the operating state of the flash memory or whether a program or erase operation ended successfully or not, can be checked by reading the status register. Here following are explained software commands, status registers, etc.
55
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 16 Pin functions (Flash memory standard serial I/O mode)
Pin VCC,VSS CNVSS RESET XIN XOUT AVSS VREF P00 to P07 P10 to P17 P20 to P23 P24 P25 P26 P27 P30 to P34 P40, P42 to P44 P41
Name Power input CNVSS Reset input Clock input Clock output Analog power supply input Reference voltage input Input port P0 Input port P1 Input port P2 RxD input TxD output SCLK input BUSY output Input port P3 Input port P4 Input P41
I/O
Description Apply program/erase protection voltage to Vcc pin and 0 V to Vss pin.
I I I O
Connect to VCC when VCC = 4.5 V to 5.5 V. Connect to Vpp (=4.5 V to 5.5 V) when VCC = 2.7 V to 4.5 V. Reset input pin. While reset is "L" level, a 20 cycle or longer clock must be input to XIN pin. Connect a ceramic resonator or crystal oscillator between XIN and XOUT pins. To input an externally generated clock, input it to XIN pin and open XOUT pin. Connect AVSS to VSS .
I I I I I O I O I I I
Enter the reference voltage for AD from this pin. Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Serial data input pin Serial data output pin Serial clock input pin BUSY signal output pin Input "H" or "L" level signal or open. Input "H" or "L" level signal or open. Input "H" level signal, when reset is released.
56
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
VCC VSS VCC VREF AVSS P44/INT3/PWM P43/INT2/SCMP2 P42/INT1 P41/INT0 P40/CNTR1 P27/CNTR0/SRDY1 P26/SCLK1 P25/SCL2/TxD P24/SDA2/RxD P23/SCL1 P22/SDA1 CNVSS P21/XCIN P20/XCOUT RESET XIN XOUT VSS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
P41 BUSY SCLK TxD RXD RxD
2 VPP
RESET 1
P30/AN0 P31/AN1 P32/AN2 P33/AN3 P34/AN4 P00/SIN2 P01/SOUT2 P02/SCLK2 P03/SRDY2 P04 P05 P06 P07 P10/(LED0) P11/(LED1) P12/(LED2) P13/(LED3) P14/(LED4) P15/(LED5) P16/(LED6) P17/(LED7)
M38507F8SP/FP
Mode setup method
Signal Value 4.5 to 5.5 V VCC 3 VSS VCC Notes 1: Connect oscillator circuit 2: Connect to Vcc when Vcc = 4.5 V to 5.5 V. Connect to VPP (=4.5 V to 5.5 V) when Vcc = 2.7 V to 4.5 V. 3: It is necessary to apply Vcc only when reset is released.
CNVSS P41 RESET
Fig. 56 Connection for serial I/O mode
57
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Software Commands
Table 17 lists software commands. In the standard serial I/O mode, erase operations, programs and reading are controlled by transferring software commands via the RxD pin. Software commands are
explained here below. Basically, the software commands of the standard serial I/O mode is as same as that of the parallel I/O mode, but it is excluded 1 command of block erase, and it is added 3 command of ID check, download function, version data output function.
Table 17 Software commands (Standard serial I/O mode 1)
Control command 1 Page read
1st byte transfer
2nd byte Address (middle) Address (middle)
3rd byte Address (high) Address (high)
4th byte 5th byte 6th byte Data output Data input Data output Data input Data output Data input Data output to 259th byte Data input to 259th byte
FF 16
When ID is not verified Not acceptable Not acceptable Not acceptable Acceptable Not acceptable
2
Page program
41 16
3 4 5 6 7
Erase all blocks Read status register Clear status register ID check Download function
A7 16 70 16 50 16 F5 16 FA 16 FB 16
D016 SRD output Address (low) SRD1 output Address (high) Checksum Version data output
Address (middle) Size (high) Size (low) Version data output Version data output
8
Version data output function
ID1 To Data required number input of times Version Version data data output output
ID size
To ID7
Acceptable Not acceptable
Version data output to 9th byte
Acceptable
Notes 1: Shading indicates transfer from flash memory microcomputer to peripheral unit. All other data is transferred from the peripheral unit to the flash memory microcomputer. 2: SRD refers to status register data. SRD1 refers to status register 1 data. 3: All commands can be accepted when the flash memory is totally blank. 4: Address high (A16 to A23) must be "0016".
58
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Page Read Command
This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page read command as explained here following. (1) Transfer the "FF16" command code with the 1st byte.
(2) Transfer addresses A8 to A15 and A16 to A23 ("0016") with the 2nd and 3rd bytes respectively. (3) From the 4th byte onward, data (D0-D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first in sync with the fall of the clock.
SCLK
RxD
FF16
A8 to A15
A16 to A23 data0 data255
TxD
SRDY1(BUSY)
Fig. 57 Timing for page read
Read Status Register Command
This command reads status information. When the "7016" command code is sent with the 1st byte, the contents of the status register (SRD) specified with the 2nd byte and the contents of status register 1 (SRD1) specified with the 3rd byte are read.
Clear Status Register Command
This command clears the bits (SR4-SR5) which are set when the status register operation ends in error. When the "5016" command code is sent with the 1st byte, the aforementioned bits are cleared. __________ When the clear status register operation ends, the SRDY1 (BUSY) signal changes from the "H" to the "L" level.
SCLK
SCLK
RxD
RxD 7016
5016
TxD
SRD output
SRD1 output
TxD
SRDY1(BUSY)
SRDY1(BUSY)
Fig. 58 Timing for reading the status register
Fig. 59 Timing for clearing the status register
59
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Page Program Command
This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page program command as explained here following. (1) Transfer the "4116" command code with the 1st byte. (2) Transfer addresses A8 to A15 and A16 to A23 ("0016") with the 2nd and 3rd bytes respectively.
(3) From the 4th byte onward, as write data (D0-D7) for the page (256 bytes) specified with addresses A8 to A23 is input sequentially from the smallest address first, that page is automatically written.
__________
When reception setup for the next 256 bytes ends, the SRDY1 (BUSY) signal changes from the "H" to the "L" level. The result of the page program can be known by reading the status register. For more information, see the section on the status register.
SCLK
RxD
4116
A8 to A15
A16 to A23
data0
data255
TxD
SRDY1(BUSY)
Fig. 60 Timing for the page program
Erase All Blocks Command
This command erases the content of all blocks. Execute the erase all blocks command as explained here following. (1) Transfer the "A716" command code with the 1st byte.
(2) Transfer the verify command code "D016" with the 2nd byte. With the verify command code, the erase operation will start and continue for all blocks in the flash memory. __________ When block erasing ends, the SRDY1 (BUSY) signal changes from the "H" to the "L" level . The result of the erase operation can be known by reading the status register.
SCLK
RxD
A716
D016
TxD
SRDY1(BUSY)
Fig. 61 Timing for erasing all blocks
60
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Download Command
This command downloads a program to the RAM for execution. Execute the download command as explained here following. (1) Transfer the "FA16" command code with the 1st byte. (2) Transfer the program size with the 2nd and 3rd bytes. (3) Transfer the check sum with the 4th byte. The check sum is added to all data sent with the 5th byte onward.
(4) The program to execute is sent with the 5th byte onward. When all data has been transmitted, if the check sum matches, the downloaded program is executed. The size of the program will vary according to the internal RAM.
SCLK
RxD
FA16
Data size Data size (low) (high)
Check sum
Program data
TxD
Program data
SRDY1(BUSY)
Fig. 62 Timing for download
Version Information Output Command
This command outputs the version information of the control program stored in the boot area. Execute the version information output command as explained here following.
(1) Transfer the "FB16" command code with the 1st byte. (2) The version information will be output from the 2nd byte onward. This data is composed of 8 ASCII code characters.
SCLK
RxD
FB16
TxD
`V'
`E'
`R'
`X'
SRDY1(BUSY)
Fig. 63 Timing for version information output
61
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ID Check
This command checks the ID code. Execute the boot ID check command as explained here following. (1) Transfer the "F516" command code with the 1st byte. (2) Transfer addresses A0 to A7, A8 to A15 and A16 to A23 ("0016") of
the 1st byte of the ID code with the 2nd, 3rd and 4th bytes respectively. (3) Transfer the number of data sets of the ID code with the 5th byte. (4) The ID code is sent with the 6th byte onward, starting with the 1st byte of the code.
SCLK
RxD
F516
D416
FF16
0016
ID size
ID1
ID7
TxD
SRDY1(BUSY)
Fig. 64 Timing for the ID check
ID Code
When the flash memory is not blank, the ID code sent from the peripheral units and the ID code written in the flash memory are compared to see if they match. If the codes do not match, the command
sent from the peripheral units is not accepted. An ID code contains 8 bits of data. Area is, from the 1st byte, addresses FFD416 to FFDA16. Write a program into the flash memory, which already has the ID code set for these addresses.
Address FFD416 FFD516 FFD616 FFD716 FFD816 FFD916 FFDA16 FFDB16 ID1 ID2 ID3 ID4 ID5 ID6 ID7 ROM cord Protect control Interrupt vector area
Fig. 65 ID code storage addresses
62
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Status Register (SRD)
The status register indicates operating status of the flash memory and status such as whether an erase operation or a program ended successfully or in error. It can be read by writing the read status register command (7016). Also, the status register is cleared by writing the clear status register command (5016). Table 18 gives the definition of each status register bit. After clearing the reset, the status register outputs "8016".
The sequencer status indicates the operating status of the device. This status bit is set to "0" (busy) during write or erase operation and is set to "1" upon completion of these operations.
Erase Status (SR5)
The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set to "1". When the erase status is cleared, it is set to "0".
Sequencer status (SR7)
After power-on and recover from deep power down mode, the sequencer status is set to "1"(ready). Table 18 Status register (SRD)
Program Status (SR4)
The program status reports the operating status of the auto write operation. If a write error occurs, it is set to "1". When the program status is cleared, it is set to "0".
Definition
SRD0 bits SR7 (bit7) SR6 (bit6) SR5 (bit5) SR4 (bit4) SR3 (bit3) SR2 (bit2) SR1 (bit1) SR0 (bit0) Status name Sequencer status Reserved Erase status Program status Reserved Reserved Reserved Reserved
"1"
Ready Terminated in error Terminated in error -
"0"
Busy Terminated normally Terminated normally -
Status Register 1 (SRD1)
Status register 1 indicates the status of serial communications, results from ID checks and results from check sum comparisons. It can be read after the SRD by writing the read status register command (7016). Also, status register 1 is cleared by writing the clear status register command (5016). Table 19 gives the definition of each status register bit. "0016" is output when power is turned on and the flag status is maintained even after the reset.
Check Sum Consistency Bit (SR12)
This flag indicates whether the check sum matches or not when a program is downloaded for execution using the download function.
ID Check Completed Bits (SR11 and SR10)
These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.
Data Reception Time Out (SR9)
This flag indicates when a time out error is generated during data reception. If this flag is attached during data reception, the received data is discarded and the microcomputer returns to the command wait state.
Boot Update Completed Bit (SR15)
This flag indicates whether the control program was downloaded to the RAM or not, using the download function. Table 19 Status register 1 (SRD1)
SRD1 bits SR15 (bit7) SR14 (bit6) SR13 (bit5) SR12 (bit4) SR11 (bit3) SR10 (bit2)
Status name Boot update completed bit Reserved Reserved Checksum match bit ID check completed bits
Definition "1" Update completed Match 00 01 10 11 Time out "0" Not Update Mismatch Not verified Verification mismatch Reserved Verified Normal operation -
SR9 (bit1) SR8 (bit0)
Data reception time out Reserved
63
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Full Status Check
Results from executed erase and program operations can be known
by running a full status check. Figure 66 shows a flowchart of the full status check and explains how to remedy errors which occur.
Read status register
SR4=1 and SR5 =1 ? NO SR5=0? YES SR4=0? YES
YES
Command sequence error
Execute the clear status register command (5016) to clear the status register. Try performing the operation one more time after confirming that the command is entered correctly. Should a block erase error occur, the block in error cannot be used.
NO
Erase error
NO Program error
Should a program error occur, the block in error cannot be used.
End (block erase, program)
Note: When one of SR5 to SR4 is set to "1", none of the program, erase all blocks commands is accepted. Execute the clear status register command (5016) before executing these commands.
Fig. 66 Full status check flowchart and remedial procedure for errors
Example Circuit Application for The Standard Serial I/O Mode
Figure 67 shows a circuit application for the standard serial I/O mode. Control pins will vary according to programmer, therefore see the peripheral unit manual for more information.
P41 Clock input BUSY output Data input Data output SCLK SRDY1 (BUSY) RXD TXD
M38507F8
VPP power source input
CNVss
Notes 1: Control pins and external circuitry will vary according to peripheral unit. For more information, see the peripheral unit manual. 2: In this example, the Vpp power supply is supplied from an external source (writer). To use the user's power source, connect to 4.5 V to 5.5 V.
Fig. 67 Example circuit application for the standard serial I/O mode
64
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Flash memory Electrical characteristics
Table 20 Absolute maximum ratings Symbol VCC VI VI VI VI VO VO Pd Topr Tstg Parameter Power source voltage Input voltage P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44, VREF Input voltage P22, P23 Input voltage RESET, XIN Input voltage CNVSS Output voltage P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44, XOUT Output voltage P22, P23 Power dissipation Operating temperature Storage temperature Conditions Ratings -0.3 to 6.5 -0.3 to VCC +0.3 All voltages are based on VSS. Output transistors are cut off. -0.3 to 5.8 -0.3 to VCC +0.3 -0.3 to VCC +0.3 -0.3 to VCC +0.3 -0.3 to 5.8 1000 (Note) 255 -40 to 125 Unit V V V V V V V mW C C
Ta = 25 C
Note: The rating becomes 300 mW at the 42P2R-A/E package.
Table 21 Flash memory mode Electrical characteristics (Ta = 25oC, VCC = 4.5 to 5.5V unless otherwise noted) Limits Symbol IPP1 IPP2 IPP3 VIL VIH VPP Parameter VPP power source current (read) VPP power source current (program) VPP power source current (erase) "L" input voltage (Note) "H" input voltage (Note) VPP power source voltage VPP = VCC VPP = VCC VPP = VCC 0 2.0 4.5 Microcomputer mode operation at VCC = 2.7 to 5.5V Microcomputer mode operation at VCC = 2.7 to 3.6V 4.5 3.0 Conditions Min. Typ. Max. 100 60 30 0.8 VCC 5.5 5.5 3.6 Unit A mA mA V V V V V
VCC
VCC power source voltage
Note: Input pins for parallel I/O mode.
65
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
AC Electrical characteristics (Ta = 25oC, VCC = 4.5 to 5.5V unless otherwise noted) Table 22 Read-only mode Symbol tRC ta (AD) ta (CE) ta (OE) tCLZ tDF(CE) tOLZ tDF(OE) tPHZ tOH tOEH tPS Parameter Read cycle time Address access time _____ CE access time _____ OE access time _____ Output enable time (after CE) _____ Output floating time (after CE) _____ Output enable time (after OE) _____ Output floating time (after OE) _____ Output floating time (after PR) _____ _____ Output valid time (after CE, OE, address) Write recovery time (before read) _____ RP recovery time Limits Typ. Unit ns ns ns ns ns ns ns ns ns ns ns s
Min. 200
Max. 100 100 80
0 25 0 25 300 0 200 10
Note : Timing measurement condition is showed in Figure 71.
_____
Table 23 Read / Write mode (WE control) Symbol tWC tAS tAH tDS tDH tCS tCH tWP tWPH tDAP tDAE tWHRL tPS Write cycle time Address set up time Address hold time Data set up time Data hold time _____ CE set up time _____ CE hold time _____ WE pulse width "H" write pulse width Program time Erase all blocks time _____ RY/BY delay time _____ RP recovery time Parameter Limits Min. 200 100 25 100 25 0 0 100 50 Typ. Max. Unit ns ns ns ns ns ns ns ns ns s s ns s
25 1.5 200 10
Note : The read timing parameter in the command write operation mode is same as that of the read-only mode. Typical value is at VCC = 5.0 V, Ta = 25 C condition.
66
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Flash memory mode Electrical characteristics (Ta = 25 oC, VCC = 4.5 to 5.5V unless otherwise noted) Table 24 Read / Write mode (CE control) Symbol tWC tAS tAH tDS tDH tWS tWH tCEP tCEPH tDAP tDAE tEHRL tPS Write cycle time Address set up time Address hold time Data set up time Data hold time
______ _____
Parameter
Limits Min. 200 100 25 100 25 0 0 100 50 Typ. Max.
Unit ns ns ns ns ns ns ns ns ns s s ns s
WE set up time ______ WE hold time _____ CE pulse width _____ "H" CE pulse width Program time Erase all blocks time
_____
25 1.5 200 10
RY/BY delay time _____ RP recovery time
Note : The read timing parameter in the command write operation mode is same as that of the read-only mode. Typical value is at VCC = 5.0 V, Ta = 25 C condition.
Table 25 Erase and program operation Parameter Erase all blocks time Block erase time Program time (1byte)
Min.
Typ. 1.5 1.0 25
Max.
Unit s s s
Table 26 VCC power up / power down timing Symbol tVCS Parameter RP = VIH set up time (after rised VCC = VCC min.)
_____
Min. 10
Typ.
Max.
Unit s
Note : Miserase or miswrite may happen, in case of noise pulse due to the power supply on or off is input to the control pins. Therefore disableing the write mode is need for prevent from memory data break at the power supply on or off. 10s (min.) waiting time is need to initiate read or write op_____ eration after VCC rises to VCC min. at power supply on. The memory data is protected owing to keep the RP pin VIL level at power supply off. The _____ _____ RP pin must be kept VIL level for 10s (min.) after VCC rises to VCC min. at the _____ power supply on. The RP pin must be kept VIL level until the VCC _____ falls to the GND level at power supply off. RP pin doesn't have latch mode, so RP pin must be kept VIH level during read, erase and program operation.
67
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Inhibit read / write
Inhibit read / write
Inhibit read / write
VCC
5.0V GND tVCS VIH VIL VIH VIL VIH VIL
RP
CE
tPS
tPS
WE
Fig. 68 VCC power up / power down timing
68
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Program
VIH Address VIL VIH CE VIL OE VIH VIL WE VIH VIL DATA VIH VIL VoH RY/BY VoL VIH RP VIL
40H DIN Valid Address
Read status register
Write read array command
Valid Address
tWC tCS
tAS
tAH
ta(CE)
tCH tWP tWPH
ta(OE) tOEH
tDS
SRD FFH
tDH tWHRL tPS tDAP
_____
Fig. 69 AC wave for program operation (WE control)
Program
VIH Address VIL VIH CE VIL OE VIH VIL VIH WE VIL VIH DATA VIL VoH RY/BY VoL VIH RP VIL
40H
Read status register
Write read array command
Valid Address
Valid Address
tWC
tAS
tAH
ta(CE) ta(OE)
tWS
tCEP tWH tDS
DIN
tOEH
SRD
FFH
tDH tEHRL tPS tDAP
Fig. 70 AC wave for program operation (CE control)
_____
69
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
VIH Address VIL VIH VIL OE VIH VIL WE VIH VIL DATA VOH VOL RP VIH VIL HIGH-Z tPS tCLZ ta (OE) tOLZ
Valid output Valid address
tRC ta (AD) ta (CE) tDF(CE)
CE
tOEH
tDF(OE) tOH HIGH-Z tPHZ
Fig. 71 AC wave for read operation and test condition
1.3V 1N914 3.3k measurement pin CL =100pF
AC electrical characteristics test condition Input voltage : VIL = 0V, VIH = 5.0V Input signal rising time, falling time : 10ns Timing measurement Reference voltage : 1.5V Load circuit : 1TTL gate+ CL(100pF ) or
Fig. 72 AC electrical characteristics test condition
70
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Erase
VIH Address VIL tWC VIH CE VIL tCS VIH OE VIL VIH WE VIL tWP VIH DATA VIL VOH RY/BY VOL tPS RP VIH VIL
_____
Read status register
Write read array command
Valid Address
Valid Address
tAS
tAH
ta(CE)
tCH tOEH tDAE tDH
D0H
ta(OE)
tWPH
tDS
20H
SRD
FFH
tWHRL
Fig. 73 AC wave for erase operation (WE control)
Erase
VIH Address VIL tWC CE VIH VIL VIH OE VIL tWS WE VIH VIL VIH DATA VIL RY/BY VOH VOL tPS RP VIH VIL
20H
Read status register
Write read array command
Valid Address
Valid Address
tAS
tAH
ta(CE)
tCEP
tCEPH tOEH
ta(OE)
tWH tDS
D0H
tDAE tDH
SRD FFH
tEHRL
Fig. 74 AC wave for erase operation (CE control)
_____
71
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
NOTES ON PROGRAMMING Processor Status Register
The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1." After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.
A-D Converter
The comparator uses capacitive coupling amplifier whose charge will be lost if the clock frequency is too low. Therefore, make sure that f(XIN) in the middle/high-speed mode is at least on 500 kHz during an A-D conversion. Do not execute the STP or WIT instruction during an A-D conversion.
Interrupts
The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.
Instruction Execution Time
The instruction execution time is obtained by multiplying the frequency of the internal clock by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock is half of the XIN frequency in high-speed mode.
Decimal Calculations
* To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute an ADC or SBC instruction. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction. * In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.
NOTES ON USAGE Differences between 3850 group (standard) and 3850 group (spec. H)
(1) The absolute maximum ratings of 3850 group (spec. H) is smaller than that of 3850 group (standard). *Power source voltage Vcc = -0.3 to 6.5 V *CNVss input voltage VI = -0.3 to Vcc +0.3 V (2) The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT may be some differences between 3850 group (standard) and 3850 group (spec. H). (3) Do not write any data to the reserved area and the reserved bit. (Do not change the contents after rest.) (4) Fix bit 3 of the CPU mode register to "1". (5) Be sure to perform the termination of unused pins.
Timers
If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n+1).
Multiplication and Division Instructions
* The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction. * The execution of these instructions does not change the contents of the processor status register.
Ports
The contents of the port direction registers cannot be read. The following cannot be used: * The data transfer instruction (LDA, etc.) * The operation instruction when the index X mode flag (T) is "1" * The addressing mode which uses the value of a direction register as an index * The bit-test instruction (BBC or BBS, etc.) to a direction register * The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a direction register. Use instructions such as LDM and STA, etc., to set the port direction registers.
Handling of Source Pins
In order to avoid a latch-up occurrence, connect a capacitor suitable for high frequencies as bypass capacitor between power source pin (VCC pin) and GND pin (VSS pin) and between power source pin (VCC pin) and analog power source input pin (AVSS pin). Besides, connect the capacitor to as close as possible. For bypass capacitor which should not be located too far from the pins to be connected, a ceramic capacitor of 0.01 F-0.1F is recommended.
Serial I/O
In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the SRDY1 signal, set the transmit enable bit, the receive enable bit, and the SRDY1 output enable bit to "1." Serial I/O1 continues to output the final bit from the TXD pin after transmission is completed. SOUT2 pin for serial I/O2 goes to high impedance after transmission is completed. When an external clock is used as synchronous clock in serial I/ O1 or serial I/O2, write transmission data to the transmit buffer register or serial I/O2 register while the transfer clock is "H."
EPROM Version/One Time PROM Version/ Flash Memory Version
The CNVss pin is connected to the internal memory circuit block by a low-ohmic resistance, since it has the multiplexed function to be a programmable power source pin (VPP pin) as well. To improve the noise reduction, connect a track between CNVss pin and Vss pin or Vcc pin with 1 to 10 k resistance. The mask ROM version track of CNVss pin has no operational interference even if it is connected to Vss pin or Vcc pin via a resistor.
72
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DATA REQUIRED FOR MASK ORDERS
The following are necessary when ordering a mask ROM production: 1. Mask ROM Order Confirmation Form 1 2. Mark Specification Form 2 3. Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
ROM PROGRAMMING METHOD
The built-in PROM of the blank One Time PROM version and buitin EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area. Table 27 Programming adapter Package Name of Programming Adapter 42P4B, 42S1B PCA4738S-42A 42P2R-A/E PCA4738F-42A
DATA REQUIRED FOR One Time PROM PROGRAMMING ORDERS
The following are necessary when ordering a PROM programming service: 1. ROM Programming Confirmation Form 1 2. Mark Specification Form 2 (only special mark with customer's trade mark logo) 3. Data to be programmed to PROM, in EPROM form (three identical copies) or one floppy disk. For the mask ROM confirmation and the mark specifications, refer to the "Mitsubishi MCU Technical Information" Homepage. 1 Mask ROM Confirmation Forms http://www.infomicom.mesc.co.jp/38000/38ordere.htm 2 Mark Specification Forms http://www.infomicom.mesc.co.jp/mela/markform.htm
The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 75 is recommended to verify programming.
Programming with PROM programmer
Screening (Caution) (150 C for 40 hours)
Verification with PROM programmer
Functional check in target device Caution : The screening temperature is far higher than the storage temperature. Never expose to 150 C exceeding 100 hours.
Fig. 75 Programming and testing of One Time PROM version
73
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS
Table 28 Absolute maximum ratings Symbol VCC VI Parameter Power source voltage Input voltage P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44, VREF Input voltage P22, P23 Input voltage RESET, XIN Input voltage CNVSS Output voltage P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44, XOUT Output voltage P22, P23 Power dissipation Operating temperature Storage temperature Conditions Ratings -0.3 to 6.5 -0.3 to VCC +0.3 All voltages are based on VSS. Output transistors are cut off. -0.3 to 5.8 -0.3 to VCC +0.3 -0.3 to VCC +0.3 -0.3 to VCC +0.3 -0.3 to 5.8 1000 (Note) -20 to 85 -40 to 125 Unit V V V V V V V mW C C
VI VI VI VO VO Pd Topr Tstg
Ta = 25 C
Note : The rating becomes 300mW at the 42P2R-A/E package.
Table 29 Recommended operating conditions (1) (VCC = 2.7 to 5.5 V, Ta = -20 to 85 C, unless otherwise noted) Symbol VCC VSS VREF AVSS VIA VIH VIH VIL VIL VIL IOH(peak) IOH(peak) IOL(peak) IOL(peak) IOL(peak) IOH(avg) IOH(avg) IOL(avg) IOL(avg) IOL(avg) Power source voltage Parameter 8 MHz (high-speed mode) 8 MHz (middle-speed mode), 4 MHz (high-speed mode) Min. 4.0 2.7 2.0 0 AN0-AN4 P00-P07, P10-P17, P20-P27, P30-P34, P40-P44 RESET, XIN, CNVSS P00-P07, P10-P17, P20-P27, P30-P34, P40-P44 RESET, CNVSS XIN P00-P07, P10-P17, P30-P34 P20, P21, P24-P27, P40-P44 P00-P07, P30-P34 P10-P17 P20-P27,P40-P44 (Note) P00-P07, P10-P17, P30-P34 P20, P21, P24-P27, P40-P44 P00-P07, P30-P34 P10-P17 P20-P27,P40-P44 (Note) (Note) (Note) AVSS 0.8VCC 0.8VCC 0 0 0 VCC VCC VCC 0.2VCC 0.2VCC 0.16VCC -80 -80 80 120 80 -40 -40 40 60 40 Limits Typ. 5.0 5.0 0 VCC Max. 5.5 5.5 Unit V V V V V V V V V V mA mA mA mA mA mA mA mA mA mA
Power source voltage A-D convert reference voltage Analog power source voltage Analog input voltage "H" input voltage "H" input voltage "L" input voltage "L" input voltage "L" input voltage "H" total peak output current "H" total peak output current "L" total peak output current (Note) "L" total peak output current (Note) "L" total peak output current "H" total average output current "H" total average output current "L" total average output current (Note) "L" total average output current (Note) "L" total average output current
(Note) (Note)
Note : The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.
74
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 30 Recommended operating conditions (2) (VCC = 2.7 to 5.5 V, Ta = -20 to 85 C, unless otherwise noted) Symbol IOH(peak) IOL(peak) IOL(peak) IOH(avg) IOL(avg) IOL(avg) f(XIN) f(XIN) "H" peak output current Parameter P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44 (Note 1) "L" peak output current (Note 1) P00-P07, P20-P27, P30-P34, P40-P44 "L" peak output current (Note 1) P10-P17 "H" average output current P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44 (Note 2) "L" average output current (Note 2) P00-P07, P20-P27, P30-P34, P40-P44 "L" average output current (Note 2) P10-P17 Internal clock oscillation frequency (VCC = 4.0 to 5.5V) (Note 3) Internal clock oscillation frequency (VCC = 2.7 to 5.5V) (Note 3) Min. Limits Typ. Max. -10 10 20 -5 5 15 8 4 Unit mA mA mA mA mA mA MHz MHz
Notes 1: The peak output current is the peak current flowing in each port. 2: The average output current IOL(avg), IOH(avg) are average value measured over 100 ms. 3: When the oscillation frequency has a duty cycle of 50%.
75
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 31 Electrical characteristics (1) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = -20 to 85 C, unless otherwise noted) Limits Symbol VOH Parameter "H" output voltage P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44 (Note) "L" output voltage P00-P07, P20-P27, P30-P34, P40-P44 "L" output voltage P10-P17 Test conditions IOH = -10 mA VCC = 4.0-5.5 V IOH = -1.0 mA VCC = 2.7-5.5 V IOL = 10 mA VCC = 4.0-5.5 V IOL = 1.0 mA VCC = 2.7-5.5 V IOL = 20 mA VCC = 4.0-5.5 V IOL = 10 mA VCC = 2.7-5.5 V Min. VCC-2.0 VCC-1.0 2.0 1.0 2.0 1.0 0.4 0.5 0.5 VI = VCC 5.0 Typ. Max. Unit V V V V V V V V V A
VOL
VOL
VT+-VT- VT+-VT- VT+-VT- IIH
IIH IIH IIL
IIL IIL VRAM
Hysteresis CNTR0, CNTR1, INT0-INT3 Hysteresis RxD, SCLK ____________ Hysteresis RESET "H" input current P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44 ____________ "H" input current RESET, CNVSS "H" input current XIN "L" input current P00-P07, P10-P17, P20-P27 P30-P34, P40-P44 ____________ "L" input current RESET,CNVSS "L" input current XIN RAM hold voltage
VI = VCC VI = VCC VI = VSS
5.0 4 -5.0
A A A
VI = VSS VI = VSS When clock stopped
-5.0 -4 2.0 5.5
A A V
Note: P25 is measured when the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".
76
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 32 Electrical characteristics (2) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = -20 to 85 C, unless otherwise noted) Symbol Parameter Test conditions Min. High-speed mode f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors "off" High-speed mode f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off" Except Low-speed mode M38507F8FP/SP f(XIN) = stopped f(XCIN) = 32.768 kHz M38507F8FP/SP Output transistors "off" Low-speed mode f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off" Low-speed mode (VCC = 3 V) Except f(XIN) = stopped M38507F8FP/SP f(XCIN) = 32.768 kHz M38507F8FP/SP Output transistors "off" Low-speed mode (VCC = 3 V) f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off" Middle-speed mode f(XIN) = 8 MHz f(XCIN) = stopped Output transistors "off" Middle-speed mode f(XIN) = 8 MHz (in WIT state) f(XCIN) = stopped Output transistors "off" Increment when A-D conversion is executed f(XIN) = 8 MHz All oscillation stopped (in STP state) Output transistors "off" Ta = 25 C Ta = 85 C Limits Typ. 6.8 Max. 13 Unit
mA
1.6 60 T.B.D. 200
mA A A A A A A
20
40
20 T.B.D.
55
ICC
Power source current
5.0
10.0
4.0
7.0
mA
1.5
mA
800 0.1 1.0 10
A A A
77
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 33 A-D converter characteristics (VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, Ta = -20 to 85 C, f(XIN) = 8 MHz, unless otherwise noted) Symbol - - tCONV Parameter Resolution Absolute accuracy (excluding quantization error) Conversion time Test conditions Limits Min. Typ. Max. 10 4 61 Unit bit LSB 2tc(XIN) s k A A
High-speed mode, Middle-speed mode Low-speed mode VREF = 5.0 V 50
RLADDER IVREF II(AD)
Ladder resistor Reference power source input current A-D port input current
VREF "on" VREF "off"
40 35 150 0.5
200 5.0 5.0
78
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS
Table 34 Timing requirements (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = -20 to 85 C, unless otherwise noted) Symbol tW(RESET) tC(XIN) tWH(XIN) tWL(XIN) tC(CNTR) tWH(CNTR) tWL(CNTR) tWH(INT) tWL(INT) tC(SCLK1) tWH(SCLK1) tWL(SCLK1) tsu(RxD-SCLK1) th(SCLK1-RxD) tC(SCLK2) tWH(SCLK2) tWL(SCLK2) tsu(SIN2-SCLK2) th(SCLK2-SIN2) Parameter Reset input "L" pulse width External clock input cycle time External clock input "H" pulse width External clock input "L" pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input "H" pulse width CNTR0, CNTR1 input "L" pulse width INT0 to INT3 input "H" pulse width INT0 to INT3 input "L" pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input "H" pulse width (Note) Serial I/O1 clock input "L" pulse width (Note) Serial I/O1 input setup time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input "H" pulse width Serial I/O2 clock input "L" pulse width Serial I/O2 clock input setup time Serial I/O2 clock input hold time Min. 20 125 50 50 200 80 80 80 80 800 370 370 220 100 1000 400 400 200 200 Limits Typ. Max. Unit XIN cycle ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is "1" (clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is "0" (UART).
Table 35 Timing requirements (2) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = -20 to 85 C, unless otherwise noted) Symbol tW(RESET) tC(XIN) tWH(XIN) tWL(XIN) tC(CNTR) tWH(CNTR) tWL(CNTR) tWH(INT) tWL(INT) tC(SCLK1) tWH(SCLK1) tWL(SCLK1) tsu(RxD-SCLK1) th(SCLK1-RxD) tC(SCLK2) tWH(SCLK2) tWL(SCLK2) tsu(SIN2-SCLK2) th(SCLK2-SIN2) Parameter Reset input "L" pulse width External clock input cycle time External clock input "H" pulse width External clock input "L" pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input "H" pulse width CNTR0, CNTR1 input "L" pulse width INT0 to INT3 input "H" pulse width INT0 to INT3 input "L" pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input "H" pulse width (Note) Serial I/O1 clock input "L" pulse width (Note) Serial I/O1 input setup time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input "H" pulse width Serial I/O2 clock input "L" pulse width Serial I/O2 clock input setup time Serial I/O2 clock input hold time Limits Min. 20 250 100 100 500 230 230 230 230 2000 950 950 400 200 2000 950 950 400 300 Typ. Max. Unit XIN cycle ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note : When f(XIN) = 4 MHz and bit 6 of address 001A16 is "1" (clock synchronous). Divide this value by four when f(XIN) = 4 MHz and bit 6 of address 001A16 is "0" (UART).
79
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 36 Switching characteristics (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = -20 to 85 C, unless otherwise noted) Symbol tWH (SCLK1) tWL (SCLK1) td (SCLK1-TXD) tv (SCLK1-TXD) tr (SCLK1) tf (SCLK1) tWH (SCLK2) tWL (SCLK2) td (SCLK2-SOUT2) tv (SCLK2-SOUT2) tf (SCLK2) tr (CMOS) tf (CMOS) Parameter Serial I/O1 clock output "H" pulse width Serial I/O1 clock output "L" pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output "H" pulse width Serial I/O2 clock output "L" pulse width Serial I/O2 output delay time (Note 2) Serial I/O2 output valid time (Note 2) Serial I/O2 clock output falling time CMOS output rising time (Note 3) CMOS output falling time (Note 3) Test conditions Limits Min. Typ. tC(SCLK1)/2-30 tC(SCLK1)/2-30 -30 30 30 tC(SCLK2)/2-160 tC(SCLK2)/2-160 200 0 10 10 30 30 30 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns
Fig.76
140
Notes 1: When the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0". 2: When the P01/SOUT2 and P02/SCLK2 P-channel output disable bit of the Serial I/O2 control register 1 (bit 7 of address 001516) is "0". 3: The XOUT pin is excluded.
Table 37 Switching characteristics (2) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = -20 to 85 C, unless otherwise noted) Symbol tWH (SCLK1) tWL (SCLK1) td (SCLK1-TXD) tv (SCLK1-TXD) tr (SCLK1) tf (SCLK1) tWH (SCLK2) tWL (SCLK2) td (SCLK2-SOUT2) tv (SCLK2-SOUT2) tf (SCLK2) tr (CMOS) tf (CMOS) Parameter Serial I/O1 clock output "H" pulse width Serial I/O1 clock output "L" pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output "H" pulse width Serial I/O2 clock output "L" pulse width Serial I/O2 output delay time (Note 2) Serial I/O2 output valid time (Note 2) Serial I/O2 clock output falling time CMOS output rising time (Note 3) CMOS output falling time (Note 3) Test conditions Limits Min. Typ. tC(SCLK1)/2-50 tC(SCLK1)/2-50 -30 50 50 tC(SCLK2)/2-240 tC(SCLK2)/2-240 400 0 20 20 50 50 50 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns
Fig.76
350
Notes 1: When the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0". 2: When the P01/SOUT2 and P02/SCLK2 P-channel output disable bit of the Serial I/O2 control register 1 (bit 7 of address 001516) is "0". 3: The XOUT pin is excluded.
80
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Measurement output pin 100 pF
CMOS output
Fig. 76 Circuit for measuring output switching characteristics
81
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
tC(CNTR)
CNTR0 CNTR1
tWH(CNTR) 0.8VCC 0.2VCC
tWL(CNTR)
tWH(INT)
tWL(INT) 0.2VCC
INT0 to INT3
0.8VCC
tW(RESET)
RESET
0.2VCC
0.8VCC
tC(XIN) tWH(XIN) tWL(XIN) 0.2VCC
XIN
0.8VCC
SCLK1 SCLK2
tf
tC(SCLK1), tC(SCLK2) tWL(SCLK1), tWL(SCLK2) tWH(SCLK1), tWH(SCLK2) tr 0.2VCC tsu(RxD-SCLK1), tsu(SIN2-SCLK2) 0.8VCC th(SCLK1-RxD), th(SCLK2-SIN2)
RXD SIN2
td(SCLK1-TXD), td(SCLK2-SOUT2)
0.8VCC 0.2VCC tv(SCLK1-TXD), tv(SCLK2-SOUT2)
TXD SOUT2
Fig. 77 Timing diagram
82
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PACKAGE OUTLINE
42P4B
EIAJ Package Code SDIP42-P-600-1.78 JEDEC Code - Weight(g) 4.1 Lead Material Alloy 42/Cu Alloy
Plastic 42pin 600mil SDIP
42
22
1
21
Symbol
D
e SEATING PLANE
b1
b
b2
A A1 A2 b b1 b2 c D E e e1 L
Dimension in Millimeters Min Nom Max - - 5.5 0.51 - - - 3.8 - 0.35 0.45 0.55 0.9 1.0 1.3 0.63 0.73 1.03 0.22 0.27 0.34 36.5 36.7 36.9 12.85 13.0 13.15 - 1.778 - - 15.24 - 3.0 - - 0 - 15
A
42P2R-A/E
EIAJ Package Code SSOP42-P-450-0.80
42
A1
L
A2
Plastic 42pin 450mil SSOP
JEDEC Code - Weight(g) 0.63
22
Lead Material Alloy 42
e
e1
E
c
b2
HE
E
e1
F
Recommended Mount Pad Dimension in Millimeters Min Nom Max 2.4 - - - - 0.05 - 2.0 - 0.4 0.3 0.25 0.2 0.15 0.13 17.7 17.5 17.3 8.6 8.4 8.2 - 0.8 - 12.23 11.93 11.63 0.7 0.5 0.3 - 1.765 - - 0.75 - - - 0.9 0.15 - - 0 - 10 - 0.5 - - 11.43 - - 1.27 -
Symbol
1 21
A
G
D
A2 e y
b
A1
A A1 A2 b c D E e HE L L1 z Z1 y b2 e1 I2
L1
c z Z1 Detail G Detail F
L
I2
83
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
42S1B-A
EIAJ Package Code WDIP42-C-600-1.78 JEDEC Code - Weight(g)
Metal seal 42pin 600mil DIP
D
42 22
c
1
21
Symbol A A1 A2 b b1 c D E e e1 L Z
A2
Z
e
b
b1 SEATING PLANE
Dimension in Millimeters Min Nom Max - - 5.0 - - 1.0 3.44 - - 0.38 0.54 0.46 0.7 0.8 0.9 0.17 0.33 0.25 - - 41.1 - 15.8 - - - 1.778 - - 15.24 3.05 - - - - 3.05
L
A
84
A1
e1
E
HEAD OFFICE: 2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
Keep safety first in your circuit designs!
* Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
* * * These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com). When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
* *
* *
*
(c) 2000 MITSUBISHI ELECTRIC CORP. New publication, effective Dec. 2000. Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev. No. 1.0 1.1 2.0 First Edition Font errors are revised. Page 1; "qInterrupts" of "FEATURES" is revised. Page 1; Figure 1 is partly revised. Page 6; Table 3 is partly revised.
3850 GROUP (SPEC. H) DATA SHEET
Revision Description Rev. date 000309 000322 001222
Page 17; Explanations of "INTERRUPTS" are partly revised. Page 23; Figure 20 is partly revised. Page 27; Figure 24 is partly revised. Page 33; Explanations of "RESET CIRCUIT" are partly revised. Page 36; Note 1 into Figure 42 is partly revised. Pages 38 to 71; Explanations of "FLASH MEMORY VERSION" are added. Page 41; Figure 45 is partly revised. Page 72; "EPROM Version/One Time PROM Version/Flash Memory Version" of "NOTES ON USAGE" is added. Page 73; "DATA REQUIRED FOR MASK ORDERS" is added. Page 73; "DATA REQUIRED FOR One Time PROM PROGRAMMING ORDERS" is added. Page 73; "ROM PROGRAMMING METHOD" is added. Page 77; Table 32 is partly revised. Page 79; Limit of tw(RESET) into Table 34 is revised. Page 79; Limit of tw(RESET) into Table 35 is revised.
(1/1)


▲Up To Search▲   

 
Price & Availability of M38503E4SS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X